为探究定子叶片对于推进器性能影响,对不同结构的推进器进行水动力分析。设计配备加速型导流罩的7叶螺旋桨推进器,通过增加不同定子叶片以及设置对转推进器得到5种推进器。基于计算流体力学(CFD)对推进器的流场进行仿真模拟,考察不同结构推进器的水动力特性变化。结果表明:在研究的转速范围内前置定子最高降低扭矩百分比仅为48.71%,后置定子可完美平衡到100.99%的扭矩;前置定子降低推力幅度最大可达36.16%,后置定子提高整体推力最高为3.32%;对转推进器在推力方面远高于泵喷推进器2~4倍,且具有扭矩自平衡的效果,流场稳定性远低于泵喷;后置定子泵喷相比无定子推进器效率提高6.24%,且具有更加稳定的尾流场。
In order to explore the influence of stator blades on propeller performance, the hydrodynamic analysis of propellers with different structures was carried out. A seven-bladed propeller equipped with an accelerating hood is designed. Five kinds of propellers are obtained by adding different stator blades and setting counterrotating thrusters. Based on computational fluid dynamics (CFD), the hydrodynamic characteristics of propellers with different structures were investigated. The results show that the highest torque reduction percentage of the front stator is only 48.71%, and the rear stator can be perfectly balanced to 100.99% torque in the speed range studied. The thrust reduction of the front stator is up to 36.16%, and the overall thrust of the rear stator is up to 3.32%. The thrust of counterrotating thruster is 2~4 times higher than that of pump-jet thruster, and it has the effect of torque self-balance, and the flow field stability is much lower than that of pump-jet thruster. Compared with the stator-free propeller, the efficiency of the rear-mounted stator pump jet is 6.24% higher and the wake flow field is more stable.
2023,45(23): 31-38 收稿日期:2022-10-17
DOI:10.3404/j.issn.1672-7649.2023.23.006
分类号:U661.31+3
作者简介:张敏革(1980-),女,博士,高级工程师,研究方向为计算流体力学、水下推进器
参考文献:
[1] 刘业宝. 水下航行器泵喷推进器设计方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2013
[2] 袁建平, 王子路, 王龙滟. 泵喷推进器推进性能及噪声研究综述[J]. 舰船科学技术, 2022, 44(6): 1–7.
YUAN J P, WANG Z L, WANG L Y. A review on the performance and noise of pump-jet propulsion [J]. Ship Science and Technology, 2022, 44(6): 1–7.
[3] 胡健, 王楠, 胡洋. 加速导管和减速导管的性能比较[J]. 北京航空航天大学学报, 2017, 43(2): 240–252
HU J, WANG N, HU Y. Performance comparison of accelerating catheter and decelerating catheter[J]. Journal of Beijing university of aeronautics and astronsutics, 2017, 43(2): 240–252
[4] 韩瑞德, 夏长生. 泵喷射推进器的设计方法及设计准则[C]// 中国力学学会, 1999: 122–127.
HAN R D, XIA C S. Design method and criterion of pump jet propeller [C]// Chinese Mechanical Society, 1999: 122–127.
[5] 刘占一, 宋保维, 黄桥高. 基于CFD技术的泵喷推进器水动力性能仿真方法[J]. 西北工业大学学报, 2010, 28(5): 724–729
LIU Z Y, SONG B W, HUANG Q G. Hydrodynamic performance simulation method of pump-jet propeller based on CFD technology[J]. Journal of Northwestern Polytechnical University, 2010, 28(5): 724–729
[6] 胡雷俊, 曹琳琳, 车邦祥. 基于高空化性能的对转泵喷推进器设计[J]. 工程热物理学报, 2017, 38(9): 1877–1881.
HU L J, CAO L L, CHE B X. Design of counterrotating pump jet propulaion based on high altitude perfprmance [J]. Journal of Engineering Thermophysics, 2017, 38(9): 1877–1881.
[7] 谷浪. 鱼雷泵喷推进器设计及水动力性能预报方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2019.
[8] 彭云龙, 王永生, 刘承江, 等. 前置与后置定子泵喷推进器的水动力性能对比[J]. 哈尔滨工程大学学报, 2019, 40(1): 132–140
PENG Y L, WANG Y S, LIU C J, et al. Comparative analysis of the hydrodynamic performance of front-stator and rear-stator pump-jets[J]. Journal of Harbin Engineering University, 2019, 40(1): 132–140
[9] YU Haiting, DUAN Ningyuan, HUA Hongxing, et al. Propulsion performance and unsteady forces of a pump-jet propulsor with different pre-swirl stator parameters[J]. Applied Ocean Research, 2020, 100: 102184.
[10] LI Han, HUANG Qiaogao, PAN Guang, et al. The transient prediction of a pre-swirl stator pump-jet propulsor and a comparative study of hybrid RANS/LES simulations on the wake vortices[J]. Ocean Engineering, 2020, 203: 107224.
[11] DONYAVIZADEH N, GHADIMI P. Efficacy analysis of thickness and camber size of cross section of the stator on hydrodynamic parameters in linear jet propulsion system[J]. Mathematical Problems in Engineering, 2020: 5861948.
[12] 武建国, 武天龙. 泵喷推进器扭矩自平衡优化分析[J]. 舰船科学技术, 2022, 44(12): 10–15.
WU J G, WU T L, Torque self-balancing optimization analysis of pump - jet propeller [J]. Ship Science and Technology, 2022, 44(12): 10–15.
[13] EPPLER R. A Computer progam for the desig and analysis of low-sped airfoil [J]. NASA Technical Memoandum, 1980.