为了研究大侧斜螺旋桨的精细流场,采用有限体积法结合大涡模拟(LES)模型,对E1619螺旋桨的速度场、压力场、涡量场和湍动能场进行不同程度的分析。模拟结果表明:大涡模拟很好地捕捉了尾流涡结构,梢涡互感合并的本质是相邻的下游梢涡将上游梢涡推向尾流轴向速度较高的内半径区域,梢涡与相邻上游梢涡的随边涡符号相同,导致他们相互吸引;近场轮毂涡比梢涡强度更高是因为轮毂涡包含了叶根涡,且其衰减速度更快;外半径湍动能极大值在梢涡处,且梢涡的不稳定现象极大地影响了外半径湍动能的变化,内半径湍动能先减小后增大,其增大原因是梢涡失稳导致轮毂涡振荡产生湍流。
In order to investigate the fine flow field of a large side-sloping propeller, the velocity field, pressure field, vortex volume field and turbulent kinetic energy field of the E1619 propeller were analysed to varying degrees using the finite volume method combined with the large eddy simulation (LES) model. The simulation results show that the large eddy simulation captures the wake vortex structure well, and that the nature of tip vortex mutual inductance merging is that the adjacent downstream tip vortex pushes the upstream tip vortex into the inner radius region where the axial velocity of the wake is higher, and that the tip vortex and the adjacent upstream tip vortex have the same sign of the following edge vortex, causing them to attract each other. The maximum value is at the tip vortex, and the instability of the tip vortex greatly affects the change of the outer radius turbulent kinetic energy, and the inner radius turbulent kinetic energy first decreases and then increases, which is due to the instability of the tip vortex causing turbulence from the hub vortex oscillation.
2023,45(23): 39-43 收稿日期:2023-01-13
DOI:10.3404/j.issn.1672-7649.2023.23.007
分类号:U664.3
作者简介:谢超凡(1998-),男,硕士研究生,研究方向为流噪声。
参考文献:
[1] 杨琼方, 王永生, 张志宏. 非均匀进流对螺旋桨空化水动力性能的影响[J]. 水动力学研究与进展A辑, 2011, 26(5): 538–550
YANG Q F, WANG Y S, ZHANG Z H. Effects of non-uniform inflow on propeller cavitation hydrodynamics[J]. Hydrodynamics Research and Progress A, 2011, 26(5): 538–550
[2] ZHU Z. Numerical study on characteristic correlation between cavitating flow and skew of ship propellers[J]. Ocean Engineering, 2015, 99: 63–71
[3] HIGGINS R J, ZAREV A, BARAKOS G N, et al. Numerical investigation of a two-bladed propeller inflow at yaw[J]. Journal of Aircraft, 2020, 57(2): 292–304
[4] RAD R G, SHAFAGHAT R, YOUSEFI R. Numerical investigation of the immersion ratio effects on ventilation phenomenon and also the performance of a surface piercing propeller[J]. Applied Ocean Research, 2019, 89: 251–260
[5] CARRICA P M, SADAT-Hosseini H, STERN F. CFD analysis of broaching for a model surface combatant with explicit simulation of moving rudders and rotating propellers[J]. Computers & Fluids, 2012, 53: 117–132
[6] WANG L, GUO C, XU P, et al. Analysis of the wake dynamics of a propeller operating before a rudder[J]. Ocean Engineering, 2019, 188: 106250.
[7] KUMAR P, MAHESH K. Large eddy simulation of propeller wake instabilities[J]. Journal of Fluid Mechanics, 2017, 814: 361–396
[8] 李鹏程, 刘登成, 董郑庆, 等. 基于定常RANS方法的螺旋桨毂涡结构分析[J]. 舰船科学技术, 2020, 42(9): 3439–39
LI P C, LIU D C, DENG Z Q, et al. Analysis of hub vortex structure based on steady RANS method[J]. Ship science and technology, 2020, 42(9): 3439–39
[9] 李鹏程, 周伟新, 刘登成, 等. 基于大涡模拟的螺旋桨毂涡结构分析与建模[J]. 中国造船, 2020, 61(3): 131–139
LI P C, LIU D C, DENG Z Q, et al. Modeling of propeller hub vortex structure based on large eddy simulation[J]. Shipbuilding of China, 2020, 61(3): 131–139
[10] 王恋舟, 吴铁成, 郭春雨. 螺旋桨梢涡不稳定性机理与演化模型研究[J]. 力学学报, 2021, 53(8): 2267–2278
WNG L Z, WU T C, GUO C Y. Study on instability mechanism and evolution modelof propeller tip vortices[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(8): 2267–2278
[11] POSA A, BROGLIA R, FELLI M, et al. Characterization of the wake of a submarine propeller via large-eddy simulation[J]. Computers & fluids, 2019, 184: 138–152
[12] NICOUD F, DUCROS F. Subgrid-scale stress modelling based on the square of the velocity gradient tensor[J]. Flow Turbulence and Combustion, 1999, 62(3): 183–200
[13] CHASE N, CARRICA P M. Submarine propeller computations and application to self-propulsion of DARPA suboff[J]. Ocean Engineering, 2013, 60: 68–80
[14] FELLI M, CAMUSSI R, FELICE D F. Mechanisms of evolution of the propeller wake in the transition and far fields[J]. Journal of Fluid Mechanics, 2011, 682: 5–53