斜流条件下螺旋桨可能受到较大的侧向载荷,会严重影响船舶推进效率和尾轴的安全。本文采用RANS(Reynolds-Averaged Navier Stokes)方法,结合SST k-ω两方程湍流模型和滑动网格方法,对国际标模KCS斜流中船后螺旋桨水动力载荷进行实尺度数值计算,分析不同漂角时螺旋桨在纵向、横向、垂向3个方向上的力和力矩的变化规律。计算考虑±20o,±15o,±10o,±5o以及0o漂角,结果表明斜流对螺旋桨推进载荷和侧向载荷都有较大影响,且相对漂角具有不对称特点。通过单独桨叶的推力变化曲线分析漂角对不同相位角度处螺旋桨载荷的影响规律,结果显示在桨盘面下端附近桨叶载荷更为敏感于漂角变化。通过与其他文献数据对比,分析斜流下螺旋桨载荷的尺度效应,结果表明轴向载荷和垂向载荷系数的尺度效应较大。
Large propeller lateral loads may be generated under oblique flow condition, which is critical to the safety of stern tube bearing of a ship. In the present study, the effect of oblique flow on full-scale hull-propeller hydrodynamic forces is numerically investigated based on RANS method, coupled with SST k-ω turbulent model and sliding mesh method. Analysis is carried out on the hydrodynamic forces and moments of propeller at axial, lateral and vertical directions,. The drift angles of ±20o, ±10o and 0o are taken into account in the caculation. The results show that oblique flow has a great influence on propeller propulsion load and lateral load, and the relative drift angle is asymmetric. The influence of drift angle on the propeller load at different phase angles is analyzed through Periodic single blade thrusts at different drift angles. The results show that the oblique flow has a larger effect on the blade load below the propeller center . Compared with other literature data, the scale effect is also investigatedthe. It is revealed that the scale effect of horizontal and vertical loads is large.
2023,45(23): 44-49 收稿日期:2023-03-09
DOI:10.3404/j.issn.1672-7649.2023.23.008
分类号:U664.3
基金项目:国家自然科学基金资助项目(52201323)
作者简介:马娟(1986-),女,硕士,副教授,研究方向为船舶与海洋工程水动力学
参考文献:
[1] AMINI H, STEEN S. Experimental and theoretical analysis of propeller shaft loads in oblique inflow [J]. Journal of Ship Research,2011, 55 (4): 1–21
[2] DUBBIOSO G, MUSCARI R, MASCIO A D. Analysis of a marine propeller operating in oblique flow. Part 2: very high incidence angles [J]. Comput Fluids 2014, (92): 56–81.
[3] WANG C, SUN S, LI L. Numerical analysis of propeller exciting force in oblique flow [J] Journal of Marine Science and Technology,2017, (22): 602–619.
[4] HOU L, HU A. Theoretical investigation about the hydrodynamic performance of propeller in oblique flow [J]. International Journal of Naval Architecture and Ocean Engineering, 2019: 1–12.
[5] XING T, BHUSHAN S, STERN F. Vortical and turbulent structures for KVLCC2 at drift angle 0, 12, and 30 degrees [J]. Ocean. Engineerung, 2012(55): 23–43.
[6] MUSCARI R, DUBBIOSO G, ORTOLANI F, et al. CFD analysis of the sensitivity of propeller bearing loads to stern appendages and propulsive configurations [J]. Applied Ocean Research,2017(69): 205–219.
[7] ZHANG WENZHAO XIAO, CHANGRUI. Research on numerical calculation of behind-the-boat propeller hydrodynamic performance in oblique flow [J]. Ship Science and Technology, 2014, 36(2):55-59.
[8] ORTOLANI F, DUBBIOSO G. Experimental investigation of blade and propeller loads: steady turning motion [J]. Applied Ocean Research, 2019(91): 101874.
[9] ORTOLANI F., DUBBIOSO G., MUSCARI R., et al. Experimental and numerical investigation of propeller loads in off-design conditions [J]. Jourtial of Marine Science and Engineering, 2018, 6 (45): 1–24.
[10] YAO Jianxi. Investigation on hydrodynamic performance of a marine propeller in oblique flow by RANS computations [J]. International Journal of Naval Architure and Ocean Engineering,2015, 7(1): 56-69.
[11] SUN S, LI L, WANG C, et al. Numerical prediction analysis of propeller exciting force for hull-propeller-rudder system in oblique flow [J]. International Journal of Naval Architure and Ocean Engineering, 2018(10): 69–84.
[12] VARTDAL B J, GJESTLAND T, ARVIDSEN T I. Lateral propeller forces and their effects on shaft bearings [J]. First International Symposium on Marine Propulsors, 2009.
[13] WANG C, SUN S, LI L, et al. Numerical prediction analysis of propeller bearing force for full-scale hull propeller rudder system[J]. International Journal of Naval Architure and Ocean Engineering, 2016(8): 589–601.
[14] ZHANG Yu-xin, CHEN Kang, JIANG Da-peng. CFD Analysis of the lateral loads of a propeller in oblique flow [J]. Ocean Engineering, 2020(202): 10715.
[15] FENG Dakui, YE Bin, ZHANG Zhiguo, et al. Numerical simulation of the ship resistance of KCS in different water depths for model-scale and full-scale [J]. Journal of Marine Science and Engineering, 2020, 8(10): 745–745.
[16] 余嘉威, 周宇杰, 何涛, 等. 实尺度KCS自航性能URANS仿真 [C]// 2010.第三十一届全国水动力学研讨会论文集(上册).
[17] 郭浩, 王建华, 万德成. 不同波长下KCS船运动响应与波浪增阻数值研究 [J]. 海洋工程, 2020, 38(6): 11-23.
[18] JIN Yuting, Magee Allan R, Yiew Lucas J, et al. Dynamic manoeuvres of KCS in waves using URANS computations with overset grids [J]. Journal of Physics: Conference SeriesVolume 2019, 1357: 012015.
[19] 张杰, 张印, 郭贺. KCS迎浪中耐波性的CFD数值模拟 [J]. 船舶工程, 2020, 42(6): 32-35+40.
[20] 马兴磊, 邹早建. KCS船型浅水操纵水动力计算 [J]. 船海工程, 2008(3):4-6.
[21] International Towing Tank Conference (ITTC), 2014. Practical Guidelines for Ship Resistance CFD . In: 27th ITTC.
[22] CASTRO A M., CARRICA P M., STERN F. Full scale self-propulsion computations using discretized propeller for the KRISO container ship KCS [J]. Compututers and Fluids, 2011, 51(1): 35–47.
[23] WANG Z Z, XIONG Y, WANG R, et al. Numerical study on scale effect of nominal wake of single screw ship [J]. Ocean Engineering, 2015, 104: 437–451.
[24] 马娟, 赖明雁, 魏斌. 斜流中船后螺旋桨水动力数值分析 [J]. 船舶工程, 2019, 41(8): 31-36.