为揭示三维编织复合材料船舶轴系在疲劳加载后剩余强度演化规律,在细观尺度下,基于渐进损伤方法,引入三维编织复合材料各组分疲劳失效、静拉伸失效的判定条件,考虑三维编织复合材料在疲劳加载过程中纤维束结构变化,建立一种三维编织复合材料疲劳加载后剩余强度预测模型。开展了三维编织复合材料平板试验件拉-拉疲劳后的拉伸试验,得到了循环数分别为25%、50%、75%后的剩余强度试验数据。预测模型的计算结果表明:剩余强度的预测值与试验值误差小于10%,相应循环数下试验件实际测量尺寸与计算尺寸误差小于5%,预测结果具有较高精度,说明了预测模型的有效性。
In order to reveal the evolution law of residual strength of 3D braided composites ship shafting after fatigue loading, the fatigue failure and static tensile failure conditions of each component of 3D braided composite were introduced based on the progressive damage method at the meso-scale, and the changes of fiber bundle structure of 3D braided composite during fatigue loading were considered. A prediction model of residual strength of 3D braided composites after fatigue loading was established. The tensile test of 3D braided composite was carried out after tensile fatigue, and the residual strength test data with cycles of 25%, 50% and 75% were obtained. The calculation results of the prediction model show that the error between the predicted value and the test value of the residual strength is less than 10%, and the error between the actual measured size and the calculated size of the test part is less than 5% under the corresponding number of cycles. The prediction results have a high precision, which shows the validity of the prediction model.
2023,45(23): 62-66 收稿日期:2022-12-07
DOI:10.3404/j.issn.1672-7649.2023.23.011
分类号:TB332
作者简介:马炳杰(1981-),男,博士,研究员,主要从事柴油机和动力装置低噪声与抗冲击技术研究
参考文献:
[1] 李贺军. 碳/碳复合材料[J]. 新型碳材料, 2001, 16(2): 70–80
[2] SU J M, ZHOU S J, LI R Z, et al. A review of carbon-carbon composites for engineering applications[J]. Carbon, 2015, 93(2): 1081–1081
[3] 韩振宇, 梅海洋, 付云忠, 等. 三维编织预成型体的织造及三维编织复合材料细观结构研究进展[J]. 材料工程, 2018, 46(11): 25–36.
[4] SHOKRICH M M, LESSARD L B. Progressive fatigue damage modeling of composite materials, part II: material characterization and model verification[J]. Journal of Composite Materials, 2000, 34: 1081–1116.
[5] WU W, LEE L J, CHOI S T. A study of fatigue damage and fatigue life of composite laminates[J]. Journal of Composite Materials. 1996, 30: 123–137.
[6] CHAO Z, CURIEL-SOSA J L, QUOC B T. Meso-scale progressive damage modeling and life prediction of 3D braided composites under fatigue tension loading[J]. Composite Structures, 2018, 201: 62–71.
[7] FAN Z, ZHENGUO L, ZHE W, et al. A new scheme and microstructural model for 3D full 5-directional braided composites[J]. Chinese Journal of Aeronautics, 2010, 23(1): 61–67.
[8] SONG J, WEN W, CUI H. Fatigue life prediction model of 2.5D woven composites at various temperatures[J]. Chinese Journal of Aeronautics, 2018, 31(2): 310–329.
[9] YAO W X, HIMMEL N. A new cumulative fatigue damage model for fibre-reinforced plastics[J]. Composites Science and Technology. 2000, 60(1): 59–64.
[10] HAN K S, HWANG W. Fatigue life prediction and failure mechanisms of composite materials[J]. Advanced Composite Materials. 1992, 2(1): 29–50.
[11] 朱元林, 温卫东, 刘礼华, 等. 碳/碳复合材料疲劳损伤失效试验研究[J]. 复合材料学报, 2016, 33(2): 386–393
[12] 朱元林. C/C复合材料疲劳寿命预测与分析方法研究[D]. 南京: 南京航空航天大学, 2012.
[13] YANG J N, LEE L J, SHEU D Y. Modulus reduction and fatigue damage of matrix dominated composite laminates[J]. Composite Structures. 1992, 21(2): 91–100.
[14] LIAO X, LI H, XU W, et al. Effects of tensile fatigue loads on flexural behavior of 3D braided C/C composites[J]. Composites Science & Technology, 2008, 68(2): 333–336
[15] XIA Z, ZHANG Y, ELLYIN F. A unified periodical boundary conditions for representative volume elements of composites and applications[J]. International Journal of Solids and Structures, 2003, 40(8): 1907–1921