船舶一般为大型焊接结构,焊接接头处较易产生裂纹等缺陷,因此需开展焊接接头裂纹萌生及扩展研究。首先,基于双线性内聚力模型对不锈钢钎焊接头模型进行裂纹萌生及扩展的数值模拟计算,获得载荷与裂纹扩展长度的关系,并与文献试验结果进行对比分析。在两者结果较为一致的基础上,采用相同方法对船舶典型焊接接头的裂纹萌生及扩展进行数值模拟计算和分析。结果表明,基于双线性内聚力模型的裂纹萌生及扩展分析方法能够较好地模拟船舶焊接接头裂纹扩展过程中的开裂、损伤积累及损伤未积累阶段。焊接接头裂纹萌生及扩展研究可为后续进行相关船舶结构安全评定奠定理论研究基础。
Ships are generally large welded structures. Cracks and other defects are easy to occur at the joint. Therefore, the crack initiation and propagation methods of welded joints need to be studied. Firstly, based on the bilinear cohesive zone model, the crack initiation and propagation of brazed stainless steel joints are numerically simulated, the relationship between load and crack propagation length is obtained and compared with the experimental results in literature, and on the basis of the two results are more consistent, the same method is adopted then the crack initiation and propagation of typical welded joints of ships is numerically simulated and analyzed. The results show that the crack initiation and propagation analysis method based on the bilinear cohesion model can better simulate the cracking, damage accumulation and damage non-accumulation stages in the crack propagation process of welded joints of ships. Through the numerical study of crack initiation and propagation of welded joints, the theoretical basis for the subsequent ship structural safety assessment is established.
2023,45(23): 67-73 收稿日期:2023-04-26
DOI:10.3404/j.issn.1672-7649.2023.23.012
分类号:U663
基金项目:国家自然科学基金资助项目(52171312);水路交通控制全国重点实验室开发课题资助项目(QZ2022-Y012)
作者简介:史召一(1997-),男,硕士研究生,研究方向为船舶与海洋结构物制造工艺力学
参考文献:
[1] TALJAT B, RADHAKRISHNAN B, ZACHARIA T. Numerical analysis of GTA welding process with emphasis on post-solidification phase transformation effects on residual stresses[J]. Materials Science & Engineering A, 1998, 246(1–2): 45–54
[2] 魏超. 基于内聚力模型的压裂泵泵头体裂纹扩展规律研究[D]. 荆州: 长江大学, 2019
[3] 杨庆生, 杨卫. 断裂过程的有限元模拟[J]. 计算力学学报, 1997, 14(4): 33–38
YANG Q S, YANG W. Finite element simulation of fracture process[J]. Journal of Computational Mechanics, 1997, 14(4): 33–38
[4] HUTCHINSON J W, EVANS A G. Mechanics of materials: top-down approaches to fracture[J]. Acta Materialia, 2000, 48(1): 125–135
[5] YANG Q D, SHIM D J, SPEARING S M. A cohesive zone model for low cycle fatigue life prediction of solder joints[J]. Microelectronic Engineering, 2003, 75(1): 85–95
[6] MORVARID K G, Hamid J, Amir K. Cohesive zone modeling of ductile tearing process in brazed joints[J]. Engineering Fracture Mechanics, 2013, 102: 156–170
[7] SADIGH M A S, MARAMI G, PAYGOZAR B. Failure simulation in resistance spot-welded lap-joints using cohesive zone modeling[J]. Journal of Central South University, 2018, 25(11): 2567–2577
[8] 谭菊妮. 基于内聚力模型的钎焊接头疲劳裂纹扩展有限元计算[D]. 青岛: 中国石油大学(华东), 2018
[9] 陈兴, 舒双文, 周帼彦, 等. 基于内聚力模型的T型钎焊接头裂纹扩展数值模拟[J]. 压力容器, 2014, 31(8): 7–13+58
CHEN X, SHU S W, ZHOU Y Y, et al. Numerical simulation of crack propagation of T -type brazed joints based on cohesive zone model[J]. Pressure Vessels, 2014, 31(8): 7–13+58
[10] ABDUL-BAQI A, SCHREURS P J G, GEERS M G D. Fatigue damage modeling in solder interconnects using a cohesive zone approach[J]. International Journal of Solids and Structures, 2004, 42(3): 927–942
[11] GEUBELLE P H, BAYLOR J. Impact-induced delamination of laminated composite: a 2D simulation[J]. Composites Part B Engineering, 1998, 29(5): 589–602
[12] CHANDRA N. Evaluation of interfacial fracture toughness using cohesive zone model[J]. Journal of Composites, 2002, 33(A): 1433–1447
[13] QIU Y, CRISFIELD M A, ALFANO G. An interface element formulation for the simulation of delamination with bucking[J]. Engineering Fracture Mechanics, 2001, 68(11): 1755–1776
[14] TURON A, DAVILA C G, CAMANHO P P, et al. An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models[J]. Engineering Fracture Mechanics, 2006, 74(10): 1665–1682
[15] ZHOU F H, MOLINARI J F, SHIOYA T. A rate-dependent cohesive model for simulating dynamic crack propagation in brittle materials[J]. Engineering Fracture Mechanics, 2004, 72(9): 1383–1410
[16] 倪宝玉, 徐莹, 黄其, 等. 修正内聚区长度计算公式在冰Ⅰ型裂纹扩展中的应用[J]. 中国舰船研究, 2022, 17(3): 58–66
NI B Y, XU Y, HUANG Q, et al. Application of improved cohesive zone length formula in ice mode I crack propagation[J]. Chinese Journal of Ship Research, 2022, 17(3): 58–66