针对传统动态窗口法(DWA)中存在避障中陷入局部最优导致避障时间长、距离采样点不全面导致避障失败、对移动障碍避障效果差等问题,提出了一种适用于无人艇编队集结的改进动态窗口法。首先,通过修改采样窗口的判定规则与评价函数,保留更多的优秀轨迹,优化避障路径并缩短避障时间;其次,通过进一步完善对预轨迹全过程的障碍物距离计算,剔除碰撞轨迹,提高避障成功率;再次,通过引入障碍物运动轨迹预测模型,加强对移动障碍的避障能力。最后,基于该改进算法利用Matlab进行无人艇编队集结仿真实验,结果表明,提出的改进算法能提高无人艇避障能力且能引导无人艇完成编队集结任务。
An improved dynamic window method is presented to solve the problems of traditional DWA, such as long avoidance time due to falling into local optimum during obstacle avoidance, incomplete distance sampling points leading to obstacle avoidance failure, and poor effect on obstacle avoidance. First, by modifying the decision rules and evaluation functions of the sampling window, more excellent tracks are retained, obstacle avoidance paths are optimized, and obstacle avoidance time is shortened. Secondly, by further improving the obstacle distance calculation during the whole pre-trajectory process, the collision trajectory is eliminated and the success rate of obstacle avoidance is improved. Thirdly, the obstacle avoidance ability is enhanced by introducing the obstacle motion track prediction model. Finally, the simulation results of unmanned vehicle formation assembly based on the improved algorithm using Matlab show that the improved algorithm can improve the obstacle avoidance ability of unmanned vehicle and realize the formation assembly of unmanned vehicle.
2023,45(23): 91-95 收稿日期:2022-11-15
DOI:10.3404/j.issn.1672-7649.2023.23.016
分类号:U664.8
作者简介:魏阁安(1996-),男,硕士研究生,研究方向为无人艇路径规划技术
参考文献:
[1] THOA M T, COPOT C, TRAN D T, et al. Heuristic approaches in robot path planning[C]// The Proceedings of 2016 IEEE Robotics an Autonomous Systems, 2016: 13–28.
[2] ZHANG An, LI Chong, BI Wenhao. Rectangle expansion A* pathfinding for grid maps[J]. Chinese Journal of Aeronautics, 2016, 29(5): 1385–1396
[3] QURESHI A H, AYAZ Y. Potential functions based sampling heuristic for optimal path planning[J]. Autonomous Robots, 2016, 40(6): 1079–1093
[4] 柳长安, 鄢小虎, 刘春阳, 等. 基于改进蚁群算法的移动机器人动态路径规划方法[J]. 电子学报, 2011, 39(5): 1220–1224
[5] 王晓燕, 杨乐, 张宇, 等. 基于改进势场蚁群算法的机器人路径规划[J]. 控制与决策, 2018, 33(10): 1775–1781
[6] ROESMANN C., FEITEN W., WOESCH T., et al. Bertram. trajectory modification considering dynamic constraints of autonomous robots[J], ROBOTIK 2012; 7th German Conference on Robotics, 2012, pp. 1–6.
[7] STATHEROS T, HOWELLS G, MCDONALD-MAIER K. Autonomous ship collision avoidance navigation concepts, technologies and techniques[J]. The Journal of Navigation, 2008, 61: 129–142
[8] CHANG L, SHAN L, JIANG C, et al. Reinforcement based mobile robot path planning with improved dynamic window approach in unknown environment[J]. Autonomous Robots, 2021, 45(1): 51–76
[9] 王永雄, 田永永, 李璇, 等. 穿越稠密障碍物的自适应动态窗口法[J]. 控制与决策, 2019, 34(5): 927–936
[10] 常路, 单梁, 戴跃伟, 等. 未知环境下基于改进DWA的多机器人编队控制[J]. 控制与决策, 2022, 37(10): 2524–2534
[11] 刘渐道, 刘文, 张英俊, 等. 基于改进动态窗口法的无人水面艇自主避碰算法[J]. 上海海事大学学报, 2021, 42(2): 1–7
[12] FOX D, WOLFRAM B, SEBASTIAN T. The dynamic window approach to collision avoidance[J]. IEEE Robotics Autom, 1997(4): 23–33.