针对模型预测控制(Model Predictive Control ,MPC)应用在动力定位上时,存在的参数整定困难问题,提出一种基于非线性干扰观测器的模糊MPC策略。该策略通过模糊控制算法实现模型参数自整定,并在此基础上设计了一种非线性干扰观测器用于估计未知的环境力,进一步提升控制系统鲁棒性从而实现对环境力的补偿。研究结果表明,相比于传统的MPC,该策略能够有效提升动力定位系统的控制精度达26.6% 左右,且极大降低了模型参数整定的复杂性,对于动力定位船MPC算法的应用,具有一定参考价值。
This paper proposes a fuzzy model predictive control strategy for dynamic positioning ship aiming at the problem of parameter tuning. The strategy realizes the parameter self-tuning of model predictive control by using a fuzzy control algorithm. Then, in order to further improve the robustness of the control system, a nonlinear disturbance observer is designed to estimate the unknown environmental forces, the observer is contributed to realizing the compensation of the environmental forces. Compared with the traditional MPC, this strategy can effectively improve the control accuracy of the dynamic positioning system to about 26.6%, and greatly reduce the complexity of model parameter tuning. Theoretical analysis and simulation results well prove the effectiveness and superiority of these strategy, which are valuable for the practical application of model predictive control in dynamic positioning system.
2023,45(23): 115-121 收稿日期:2022-11-10
DOI:10.3404/j.issn.1672-7649.2023.23.020
分类号:U675.73
基金项目:国家自然科学基金资金项目(51179103)
作者简介:孔宇(1991-),男,硕士研究生,研究方向动力定位控制系统
参考文献:
[1] 赵志高, 杨建民, 王磊, 等. 动力定位系统发展状况及研究方法[J]. 海洋工程, 2002(1): 91–97
ZHAO Zhigao, YANG Jianming, WANG Lei, et al. The development and research method of dynamic positioning system[J]. The Ocean Engineering, 2002(1): 91–97
[2] FOSSEN T I. Handbook of marine craft hydrodynamics and motion control[M]. John Wiley & Sons, 2011.
[3] ALMEIDA J, SILVESTRE C, PASCOAL A. Cooperative control of multiple surface vessels in the presence of ocean currents and parametric model uncertainty[J]. International Journal of Robust and Nonlinear Control, 2010, 20(14): 1549–1565
[4] LU Y, ZHANG G, SUN Z, et al. Adaptive cooperative formation control of autonomous surface vessels with uncertain dynamics and external disturbances[J]. Ocean Engineering, 2018, 167: 36–44
[5] HE H, XU S, WANG L, et al. Mitigating surge–pitch coupled motion by a novel adaptive fuzzy damping controller for a semisubmersible platform[J]. Journal of Marine Science and Technology, 2020, 25(1): 234–248
[6] DU J, YANG Y, WANG D, et al. A robust adaptive neural networks controller for maritime dynamic positioning system[J]. Neurocomputing, 2013, 110: 128–136
[7] ZHOU X, WU P, ZHANG H, et al. Learn to navigate: cooperative path planning for unmanned surface vehicles using deep reinforcement learning[J]. IEEE Access, 2019, 7: 165262–165278
[8] DAI L, CAO Q, XIA Y, et al. Distributed MPC for formation of multi-agent systems with collision avoidance and obstacle avoidance[J]. Journal of the Franklin Institute, 2017, 354(4): 2068–2085
[9] HVAMB O G. A new concept for fuel tight DP control[C]//Dynamic Positioning Conference. 2001.
[10] FANNEMEL Å V. Dynamic positioning by nonlinear model predictive control[D]. Institutt for teknisk kybernetikk, 2008.
[11] SOTNIKOVA M V, VEREMEY E I. Dynamic positioning based on nonlinear MPC[J]. IFAC Proceedings Volumes, 2013, 46(33): 37–42
[12] ZHAO Z Y, TOMIZUKA M, ISAKA S. Fuzzy gain scheduling of PID controllers[J]. IEEE transactions on systems, man, and cybernetics, 1993, 23(5): 1392–1398
[13] KAYACAN E, PARK S, RATTI C, et al. Learning-based nonlinear model predictive control of reconfigurable autonomous robotic boats: roboats[C]//2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2019: 8230–8237.
[14] FOSSEN T I. Handbook of marine craft hydrodynamics and motion control[M]. John Wiley & Sons, 2011.306–306
[15] ØVERENG S S, NGUYEN D T, HAMRE G. Dynamic positioning using deep reinforcement learning[J]. Ocean Engineering, 2021, 235: 109433