配电智能保护测控设备状态信息是判断该设备运行状态的核心依据,为此,提出基于5G网络的船用配电智能保护测控设备状态信息采集方法。该方法通过以A/D采样芯片为核心的数字信号处理器,高效采集船用配电智能保护测控设备状态信号,通过传输点组成5G网络延迟容忍传输机制的初始结构,并构建基于5G网络的数据传输模型,用于传输采集的船用配电智能保护测控设备状态信号,存储在监控终端服务器。测试结果表明:该方法能够完成获取不同设备的运行幅值信息,平均偏离程度和平均离散程度结果均在0.014以下;数据的存储速率较为稳定,均在12 MB.s-1左右,采集效果良好。
The status information of intelligent protection and measurement equipment for power distribution is the core basis for judging the operating status of the equipment. Based on this, a 5G network based method for collecting status information of intelligent protection and measurement equipment for marine power distribution is proposed. This method uses a digital signal processor with A/D sampling chips as the core to efficiently collect status signals of intelligent protection and measurement equipment for marine power distribution. The initial structure of the 5G network delay tolerance transmission mechanism is formed through transmission points, and a data transmission model based on the 5G network is constructed to transmit and collect status signals of intelligent protection and measurement equipment for marine power distribution, which are stored in the monitoring terminal server. The test results show that this method can obtain the operating amplitude information of different devices, with average deviation and average dispersion results below 0.014. The data storage rate is relatively stable, all around 12 MB. s-1, and the collection effect is good.
2023,45(23): 170-173 收稿日期:2023-09-08
DOI:10.3404/j.issn.1672-7649.2023.23.031
分类号:TN929
基金项目:国家电网公司总部科技项目资助(5500-202055466A-0-0-00)
作者简介:宋祺鹏(1979-),男,硕士,高级工程师,主要研究方向为智能配电及新能源技术
参考文献:
[1] 杨祯, 章建峰, 蒋方圆. 船用低压直流智能配电控制策略[J]. 船舶工程, 2022, 44(11): 92-97.
YANG Zhen, ZHANG Jian-feng, JIANG Fang-yuan. Ship-applied low-voltage dc smart power distribution control strategy[J]. Ship Engineering, 2022, 44(11): 92-97.
[2] 赵晓明, 魏瑞利, 韦武刚, 等. 空间站任务地面测控设备自动化运行方案的设计与实现[J]. 电讯技术, 2023, 63(6): 806-810.
ZHAO Xiao-ming, WEI Rui-li, WEI Wu-gang, et al. Design and implementation of automatic operation scheme for ground measurement and control equipment in space station tasks[J]. Telecommunication Engineering, 2023, 63(6): 806-810.
[3] 解明辉, 孙亚剑, 汤思杰, 等. 基于群体优化-概率神经网络的配电网设备状态研判模型[J]. 电工电能新技术, 2023, 42(6): 79-87.
XIE Ming-hui, SUN Ya-jian, TANG Si-jie, et al. State estimation model of distribution network equipment based on swarm optimization-probabilistic neural network[J]. Advanced Technology of Electrical Engineering and Energy, 2023, 42(6): 79-87.
[4] 朱荣荣, 周骏. 船用系泊设备结构加强形式改进[J]. 船海工程, 2022, 51(3): 47-50+55.
[5] 杜光月, 刘美丽, 周蒙, 等. 基于多DS18B20传感器阵列的数据采集方法研究[J]. 电子器件, 2023, 46(1): 16-21.