本文以舰船浮筏隔振系统为研究对象,将颗粒阻尼器应用于筏架上,研究其减振性能。采用离散单元法,通过仿真研究颗粒材料、阻尼器填充率、颗粒直径和阻尼器分层数等参数对颗粒阻尼耗能的影响规律,并通过有限元法分析在颗粒阻尼器作用下,隔振系统的减振效果。研究表明,3种颗粒材料中,铅颗粒减振效果最好,达到66%;阻尼器填充率并非越大越好,而是存在最优值,填充率为85%时耗能最大,减振效果可达到68%;同等条件下,减小颗粒直径可提高减振效果,同时通过阻尼器分层可大幅提高耗能值,提升减振效果。
Taking the floating raft vibration isolation system as research object, the particle damper was applied to raft frame to study its vibration reduction performance. First of all, discrete element method was used to study the influence of parameters such as particle material, filling rate, particle diameter and layer numbers on particle damping energy dissipation through simulation. Then the vibration reduction effect of vibration isolation system under the action of particle damper was analyzed by finite element method. The results show that lead particles have the best vibration damping effect among three particle materials, with a maximum vibration reduction effect of 66%. The filling rate is not the bigger the better, but there is an optimal value. When filling rate is 85%, energy dissipation is the largest, and the vibration reduction effect reaches 68%. Under the same conditions, reducing the particle diameter can improve the vibration reduction effect. The level of energy dissipation can be increased greatly through the layering of dampers.
2023,45(24): 1-6 收稿日期:2022-12-16
DOI:10.3404/j.issn.1672-7649.2023.24.001
分类号:TB535.1
基金项目:国家自然科学基金资助项目(51879209)
作者简介:宋春生(1981-),男,博士,教授,研究方向为振动与噪声控制
参考文献:
[1] 古龙, 闵捷. 船舶振动噪声控制技术的现状与发展[J]. 舰船科学技术, 2019, 41(23): 1-5
GU L, MIN J. Review of vibration and noise control technology for submarines[J]. Ship Science and Technology, 2019, 41(23): 1-5
[2] 夏兆旺, 茅凯杰, 薛 程, 等. 基于颗粒阻尼技术的海洋平台桁架结构振动特性研究[J]. 江苏科技大学学报(自然科学版), 2018, 32(1): 46-50
[3] 闫维明, 王宝顺, 黄绪宏. 颗粒阻尼器的研究进展及其在土木工程中的应用展望[J]. 土木工程学报, 2020, 53(5): 32-41
[4] SAEKI M. Analytical study of multi-particle damping[J]. Journal of Sound and Vibration, 2005, 281(3-5): 1133-1144
[5] NIKLAS M, ROBERT S. Damping prediction of particle dampers for structures under forced vibration using effective fields[J]. Granular Matter, 2021, 23(64): 1-13
[6] ALLAH R, YASUSHI I, YUHIRO I, et al. Experimental and numerical analysis of torque properties of rotary elastomer particle damper considering the effect of gap and no gap between rotor and body of the damper[J]. Shock and Vibration, 2021: 7724156.
[7] 鲁正, 吕西林, 闫维明. 颗粒阻尼技术研究综述[J]. 振动与冲击, 2013, 32(7): 1-7
[8] 杨俊, 刘正林, 刘杰, 等. 颗粒阻尼抑制水下航行器轴系纵振模拟试验[J]. 交通运输工程学报, 2021, 21(5): 161-176
[9] 叶林昌, 肖望强, 沈建平, 等. 基于粒子阻尼的动力装置基座减振优化设计研究[J]. 振动与冲击, 2021, 40(3): 40-47
[10] 胡泽超, 何琳, 李彦. 隔振器分布对浮筏隔振系统隔振性能的影响[J]. 舰船科学技术, 2016, 38(21): 48-52
HU Z C, HE L, LI Y. The influence of the isolator’s distribution on floating raft isolation system's performance[J]. Ship Science and Technology, 2016, 38(21): 48-52
[11] 武宏程, 耿建强, 李 勇, 等. 颗粒碰撞阻尼器特性仿真分析与试验验证[J]. 噪声与振动控制, 2020, 40(2): 221-225