豪华客滚船对于整体性能和舒适性要求较高,但由于船体结构复杂、舱室数量众多、多重噪声激励下,存在噪声预报准确性不足,降噪设计难度大的问题。本文提出一种基于统计能量法(SEA)、有限元-统计能量法(FE-SEA),有限元法(EFEA)的豪华客滚船全频段噪声预报方法,并结合贡献量分析开展舱室降噪设计。首先,基于统计能量法建立高频声振耦合模型,计算各板子系统模态密度,进行频段划分,进而建立有限元-统计能量分析模型和有限元模型;其次,通过设置损耗因子、耦合损耗因子,确定螺旋桨振动噪声,主机和电机辐射噪声、振动噪声及空调通风噪声等主要噪声源,进行全频段声学分析。最后,根据《船上噪声等级规则》MSC.337(91)噪声标准规范,提出相应降噪方案,并进行贡献量分析。结果表明,该研究成功对船舶舱室进行全频段声学预测,经降噪处理后,舱室噪声值满足规范值要求。
Luxury ro-ro passenger ships have high requirements for overall performance and comfort, but due to the complex hull structure, numerous cabins and multiple noise excitations, there are problems of insufficient noise prediction accuracy and difficulty in noise reduction design. In this paper, we propose a full-band noise prediction method for luxury ro-ro passenger ships based on statistical energy approach (SEA), finite element-statistical energy approach (FE-SEA), finite element approach (EFEA), and carry out cabin noise reduction design combined with contribution amount analysis. Firstly, the high frequency acoustic vibration coupling model is established based on the statistical energy method, the modal density of each plate subsystem is calculated, and the frequency band is divided; then the finite element-statistical energy analysis model and the finite element model are established. Secondly, by setting the loss factor and coupling loss factor, the main noise sources such as propeller vibration noise, host and motor radiation noise, vibration noise and air conditioning ventilation noise are identified and full-band acoustic analysis is carried out. Finally, according to the noise standard specification of MSC.337(91) Noise Class Rules on board, the corresponding noise reduction scheme is proposed and the contribution amount analysis is carried out. The results show that the study successfully predicts the full-band acoustics of ship cabins, and the cabin noise values meet the requirements of the specification values after the noise reduction treatment.
2023,45(24): 61-67 收稿日期:2022-11-08
DOI:10.3404/j.issn.1672-7649.2023.24.011
分类号:TB53
作者简介:郭豪(1997-),男,硕士研究生,研究方向为船舶振动噪声预测及噪声控制
参考文献:
[1] NATHAN D. Underwater noise abatement: economic factorsand policy options[J]. Environmental Science&Policy, 2019, 92: 116-123
[2] BADINO A, BORELLI D, GAGGERO T. Normativeframework for ship noise: present and situation and futuretrends[J]. Noise Control Engineering Journal, 2012, 60(6): 740-762
[3] BADINO A, BORELLI D, GAGGERO T. Noise emitted fromships: impact inside and outside the vessels[J]. Procedia-Social and Behavioral Sciences, 2012, 48: 868-879.
[4] ZHANG Bo, XIANG Yang, HE Peng. Study on pred IMO. Code on Noise Levels on Board Ships[S]. 2012.
[5] IHLENBURG F, BABUSKA I. Finite element solution of the Helmholtz equation with high wave number Part I: the hp-version of the FEM[J]. Computers and Mathematics with Application, 1995, 30: 9-37
[6] 姚德源, 王其政. 统计能量分析原理及其应用[M]. 北京: 北京工业大学出版, 1995
[7] LYON R H, MAIDANIK G. Power flow between linearly coupled oscillators[J]. Journal of Acoustics Society of America, 1962, 34(5): 623-639
[8] 高处, 杨德庆. 船舶舱室噪声传递路径分析的声振熵赋权图法[J]. 上海交通大学学报, 2014, 48(4): 469-474
[9] 汤伟民, 林嘉欢, 张俊. 基于统计能量法的客滚船舱室降噪设计[J]. 中国造船, 2020, 61(4): 209-222
[10] 林天然, 李霞. 能量分析方法及应用综述[J]. 振动与冲击, 2021, 13(40): 222-238
[11] 朱锡, 胡忠平, 石勇. 预报基座结构噪声的有限元方法研究[J]. 海军工程大学学报, 2003, 15(6): 33-36
[12] 代文强, 郑旭, 郝志勇, 等. 采用能量有限元分析的高速列车车内噪声预测[J]. 浙江大学学报(工学版), 2019, 53(12): 2396-2403
[13] LANGLEY R S, BREMNER P. A hybrid method for the vi-bration analysis of complex structural-acoustic systems[J]. The Journal of the Acoustical Society of America, 1999, 105(3): 1657-1671
[14] 张勇, 王坤祥, 盛陈, 等. 某特种车车内中频噪声的混合FE-SEA法分析[J]. 机械科学与技术, 2018, 37(11): 1698-1704
[15] 罗文俊, 蒋峻楠, 雷晓燕, 等. 基于FE-SEA混合法的车内结构噪声预测分析[J]. 铁道学报, 2017, 39(12): 137-145
[16] 罗文俊, 蒋峻楠, 刘全民, 等. 基于FE-SEA混合法的列车结构噪声降噪研究[J]. 铁道学报, 2020, 42(10): 113-117
[17] 辛子豪, 樊红, 邹郁筱, 等. FE-SEA方法在平台支持船噪声预报中的应用[J]. 噪声与振动控制, 2021, 41(1): 21-26
[18] 中国船级社 . 船舶及产品噪声控制与检测指南[S]. 2013.
[19] 贺启环. 环境噪声控制工程[M]. 北京: 清华大学出版社, 2011.