船舶尾轴架系统在设计完成后,需对其结构强度进行计算,使得在船舶航行中不发生破坏。强度计算时为达到更高的精度要求,通常可采用有限元计算方法,在误差较小的情况下,简化计算模型有助于提高计算效率。基于对尾轴与轴毂间连接方式的简化以及模拟尾轴采用单元的不同分别建立了4种模型,在对比不同设计载荷的基础上,选取了载荷及工况进行加载计算。结果表明,有限元计算中,尾轴采用梁单元模拟时,计算出的前尾轴架应力高于采用实体单元模拟,同时在建立模型时需考虑尾轴承刚度的影响以及尾轴与轴毂间的相对滑动。
After the ship shaft bracket system is designed, its structural strength needs to be calculated so that no damage occurs during the ship's navigation. In order to achieve higher precision requirements in strength calculation, finite element calculation method can usually be used. When the error is small, simplifying the calculation model can help improve calculation efficiency. Based on the simplification of the connection between the stern shaft and the hub and the difference in the unit used to simulate the stern shaft, four models were established respectively. On the basis of comparing different design loads, the loads and load cases were selected for calculation. The results show that the stress calculated by the finite element model established by using the beam element to simulate the stern shaft is higher than that by using the solid element, and the influence of the stiffness of the stern tube bearing and the relative slip between the stern shaft and the hub must be considered when establishing the model.
2023,45(24): 80-84 收稿日期:2022-12-06
DOI:10.3404/j.issn.1672-7649.2023.24.014
分类号:U611.43
作者简介:葛奥华(1999-),男,硕士研究生,研究方向为尾轴架强度计算方法
参考文献:
[1] 于善御. 水面舰艇艉轴架强度的设计与计算[J]. 舰船科学技术, 1982(9): 47-53
YU S Y. Design and calculation of the strength of the shaft bracket of the surface warship[J]. Ship Science and Technology, 1982(9): 47-53
[2] DEDY W, RENDRA R, TOTOK Y. (2016). Strength structural analysis of the shaft bracket propeller on fast patrol boats[J]. Light, 2016, 7(2): 997-1001
[3] FIRMANDHA T, YUDI O M, ANGGARA S. Shaft bracket strength assessment based on seizing and blade loss methods[J]. Chinese Journal of Ship Research, 2019, 14(2): 47-53
[4] 祁玉荣. 舰船艉轴架强度、模态与冲击响应分析研究[D]. 上海: 上海交通大学, 2004.
[5] 王滨. 轴承刚度对船舶轴系振动特性的影响研究[J]. 齐齐哈尔大学学报(自然科学版), 2009, 25(6): 55-60
WANG B. Research on the effect of bearing stiffness on the vibration characteristics of ship shafting[J]. Journal of Qiqihar University(Philosophy & Social Science Edition), 2009, 25(6): 55-60
[6] 罗晨, 邹春平, 李增光, 等. 船舶艉轴架系统建模及振动特性分析[J]. 中国舰船研究, 2014, 9(2): 55-61
LUO C, ZOU C P, LI Z G, et al. Numerical simulation of vibration characteristics of ship shaft bracket systems[J]. Chinese Journal of Ship Research, 2014, 9(2): 55-61
[7] 唐宇航, 陈志坚, 段振斌. 考虑艉轴架结构刚度耦合的艉轴架强度计算[J]. 中国舰船研究, 2015, 10(4): 71-78
TANG Y H, CHEN Z J, DUAN Z B. Strength calculation considering structural stiffness coupling of shaft bracket[J]. Chinese Journal of Ship Research, 2015, 10(4): 71-78
[8] 王高祥. 艉轴架载荷与强度分析[D]. 哈尔滨: 哈尔滨工程大学, 2016.
[9] 许学强, 李天匀, 张旭, 等. 基于不同规范的双臂艉轴架轻量化分析[J]. 中国舰船研究, 2019, 14(4): 67-73
XU X Q, LI T Y, ZHANG X, et al. Lightweight analysis on double-arm propeller shaft bracket on basis of different rules[J]. Chinese Journal of Ship Research, 2019, 14(4): 67-73
[10] OBERG E, JONES F D. Machinery's handbook[M]. 26th ed. New York: Industrial Press, 2012.
[11] 中国船舶工业集团公司. 船舶设计实用手册(结构分册)[M]. 第3版. 北京: 国防工业出版社, 2013.
[12] 中国船舶科学研究中心. 水面舰艇结构设计计算方法: GJB/Z 119-1999[S]. 北京: 国防科学技术工业委员会, 1999.
[13] 中国船舶科学研究中心. 舰船通用规范: GJB 4000-2000[S]. 北京: 国防科学技术工业委员会, 2000.