本文针对考虑模型不确定性和时变外界环境扰动的水下机器人轨迹跟踪问题展开研究。首先基于水下机器人水平面运动学和动力学方程,结合有限时间控制方法设计一个有限时间扰动观测器用于对总扰动进行实时估计。随后基于反步滑模控制完成带扰动观测器的轨迹跟踪控制律设计,并采用二阶滤波器对虚拟控制信号进行过滤,增设滤波补偿系统用于保证滤波信号的精度。选择高增益扰动观测器和传统反步滑模控制器分别作为扰动观测器和控制器的对比项。最后在Matlab Simulink平台中进行了轨迹跟踪仿真实验。仿真结果表明,所设计的扰动观测器能够对总扰动实现快速且准确的观测估计,且水下机器人能够对目标轨迹能实现较好的跟踪效果。本文所设计的控制器可以使水下机器人快速地跟踪上目标轨迹,且相较于传统反步滑模控制器有着更小的跟踪误差。
The trajectory tracking problem of underwater vehicle considering model uncertainty and time-varying external environment disturbance is studied. Firstly, a finite time disturbance observer is designed to estimate the total disturbance in real time based on the horizontal kinematics and dynamics equations of the underwater vehicle and the finite time control method. Then, based on the backstepping sliding mode control, the trajectory tracking control law with disturbance observer is designed, and a second-order filter is used to filter the virtual control signal, and a filter compensation system is added to ensure the accuracy of the filtered signal. High gain disturbance observer and traditional backstepping sliding mode controller are selected as the comparison terms of disturbance observer and controller respectively. Finally, the trajectory tracking simulation is carried out in Matlab Simulink platform. Simulation results show that the designed disturbance observer can achieve fast and accurate observation and estimation of total disturbances, and the underwater robot can achieve good tracking effect on the target trajectory. The controller designed can make the underwater robot track the target trajectory quickly, and has smaller tracking error than the traditional backstepping sliding mode controller.
2023,45(24): 108-115 收稿日期:2022-10-26
DOI:10.3404/j.issn.1672-7649.2023.24.020
分类号:U674.941:U664.82
基金项目:国家自然科学基金资助项目(51979110)
作者简介:罗一汉(2000-),男,硕士研究生,研究方向为水下机器人运动控制
参考文献:
[1] 陈东军, 吴家鸣. 带缆水下机器人控制仿真模拟与水动力分析[J]. 船舶力学, 2020, 24(2): 170-178
CHEN Dongjun, WU Jiaming. Control simulation and hydrodynamics analysis of a tethered underwater robot[J]. Journal of Ship Mechanics, 2020, 24(2): 170-178
[2] 霍江航, 姜向远, 栾义忠, 等. 基于L1自适应理论的AUV深度控制器设计[J]. 中国舰船研究, 2021, 16(5): 150-157
HUO Jianghang, JIANG Xiangyuan, LUAN Yizhong, et al. Design of AUV depth controller based on L1 adaptive theory[J]. Chinese Journal of Ship Research, 2021, 16(5): 150-157
[3] 武建国, 刘杰, 陈凯. 时变干扰下AUV三维轨迹跟踪反步滑模控制[J]. 舰船科学技术, 2022, 44(7): 82-87
Wu Jianguo, LIU Jie, CHEN Kai. Backstepping sliding mode control of auv three-dimensional trajectories tracking under time-varying interference[J]. Ship Science and Technology, 2022, 44(7): 82-87
[4] 徐健, 汪慢, 乔磊, 等. 欠驱动UUV三维轨迹跟踪的反步动态滑模控制[J]. 华中科技大学学报(自然科学版), 2015, 43(8): 107-113
XU Jian, WANG Man, QIAO Lei, et al. Backstepping dynamical sliding mode controller for three-dimensional trajectory tracking of underactuated UUV[J]. Journal of Huazhong University of Science and Technology (natural science edition), 2015, 43(8): 107-113
[5] 杜佳璐, 李健. 欠驱动水下机器人三维轨迹跟踪有限时间预设性能控制. 控制理论与应用[J], 2022, 39(2): 383-392.
DU Jialu, LI Jian. Finite-time prescribed performance control for the three-dimension trajectory tracking of underactuated autonomous underwater vehicles[J]. Control Theory & Applications, 2022, 39(2): 383-392.
[6] GUERRERO J, TORRES J, ANTONIO E, et al. Autonomous Underwater Vehicle Robust Path Tracking: Generalized Super-Twisting Algorithm and Block Backstepping Controllers[J]. Control Engineering and Applied Informatics, 2018, 20(2): 51-63
[7] GUERRERO J, TORRES J, CREUZE V, et al. Adaptive disturbance observer for trajectory tracking control of underwater vehicles [J]. Ocean Engineering, 2020, 200.
[8] ALI N, TAWIAH I, ZHANG W D. Finite-time extended state observer based nonsingular fast terminal sliding mode control of autonomous underwater vehicles. Ocean Engineering, Volume 218, 2020, 108179.
[9] ZHENG J, SONG L, LIU L, et al. Fixed-time sliding mode tracking control for autonomous underwater vehicles [J]. Applied Ocean Research, 2021, 117.
[10] FOSSEN T I. Guidance and control of ocean vehicles[M]. New York, USA: John Wiley & Sons Inc, 1994.
[11] 吴乃龙. 水下机器人建模与非线性自适应控制研究[D]. 上海: 上海交通大学, 2018.
[12] HU Q, JIANG B. Continuous finite-time attitude control for rigid spacecraft based on angular velocity observer[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 54(3): 1082-1092
[13] 刘金琨. 滑膜变结构控制Matlab仿真: 基本理论与设计方法[M]. 北京: 清华大学出版社, 2019.
[14] WANG J, WANG C, WEI Y, et al. Command filter based adaptive neural trajectory tracking control of an underactuated underwater vehicle in three-dimensional space[J]. Ocean Engineering, 2019, 180: 175-86
[15] 薛乃耀. 作业型水下机器人运动控制系统研究[D]. 广州: 华南理工大学, 2020.
[16] 罗一汉, 吴家鸣, 周汇锋. 基于CFD水动力参数的水下机器人轨迹跟踪控制[J]. 中国舰船研究, 2022, 17(3): 237-245,272
LUO Yihan, WU Jiaming, ZHOU Huifeng. Trajectory tracking control of underwater vehicle based on hydrodynamic parameters calculated by CFD[J]. Chinese Journal of Ship Research, 2022, 17(3): 237-245,272
[17] LEI M, LI Y, PANG S. Extended state observer-based composite-system control for trajectory tracking of underactuated AUVs [J]. Applied Ocean Research, 2021, 112.