本文设计基于无线网络的船舶电气设备过热监测系统。该系统通过短距无线通信模块、ZigBee通信协议以及无线网络中心节点组网,利用无线网络中心节点组网与短距无线通信模块实现系统的数据与指令等传输,同时利用红外摄像机采集船舶电气设备图像,并使用视觉特征三维重建方式对船舶电气设备过热位置进行重构。通过视觉识别的似然函数判断船舶电气设备是否过热,并计算船舶电气设备红外图像过热点的红外热点强度,实现船舶电气设备过热监测。实验结果表明,该系统具备较好的无线网络传输能力,并可有效对电气设备过热位置进行视觉特征三维重构,同时准确判断船舶电气设备过热情况,具备较为显著的应用效果。
This article designs a wireless network-based ship electrical equipment overheating monitoring system. The system utilizes the design of a short range wireless communication module, ZigBee communication protocol, and wireless network center node networking to transmit system data and instructions. At the same time, infrared cameras are used to collect images of ship electrical equipment, and visual feature 3D reconstruction is used to reconstruct the overheating position of ship electrical equipment. The likelihood function of visual recognition is used to determine whether the ship's electrical equipment is overheating, and the infrared hotspot intensity of the infrared image of the ship's electrical equipment is calculated to achieve overheating monitoring of the ship's electrical equipment. The experimental results show that the system has good wireless network transmission capability and can effectively reconstruct the visual features of the overheating position of electrical equipment in 3D. At the same time, it can accurately determine the overheating situation of ship electrical equipment and has significant application effects.
2023,45(24): 180-183 收稿日期:2023-04-19
DOI:10.3404/j.issn.1672-7649.2023.24.033
分类号:TP391
基金项目:江西省教育厅科学技术研究项目(GJJ2203011)
作者简介:张婷婷(1988-),女,硕士,讲师,主要从事电气技术研究
参考文献:
[1] 蒋佳炜, 胡以怀, 丁梦豪, 等. 基于相对混乱度特征选择的船舶风机智能状态监测与故障诊断[J]. 上海海事大学学报, 2023, 44(1): 88-94.
JIANG Jia-wei, HU Yi-huai, DING Meng-hao, et al. Intelligent condition monitoring and fault diagnosis of marine fans based on feature selection of relative chaos[J]. Journal of Shanghai Maritime University, 2023, 44(1): 88-94.
[2] 王瑞涵, 陈辉, 管聪. 基于机器学习的船舶机舱设备状态监测方法[J]. 中国舰船研究, 2021, 16(1): 158-167.
WANG Rui-han, CHEN Hui, GUAN Cong. Condition monitoring method for marine engine room equipment based on machine learning[J]. Chinese Journal of Ship Research, 2021, 16(1): 158-167.
[3] 许志浩, 郑诗泉, 康兵, 等. 基于三相自搜寻比较法的电气设备过热故障识别方法[J]. 红外技术, 2021, 43(11): 1112-1118.
XU Zhi-hao, ZHENG Shi-quan, KANG Bing, et al. Overheat fault identification method for electrical equipment based on three-phase self-searching comparison method[J]. Infrared Technology, 2021, 43(11): 1112-1118.
[4] 何琪, 杨培青, 徐鹏. 基于Z-Stack协议栈的船舶机舱环境监测系统设计[J]. 船舶工程, 2021, 43(3): 100-104.
HE Qi, YANG Pei-qing, XU Peng. Design of ship engine room environmental monitoring system based on Z-stack protocol stack[J]. Ship Engineering, 2021, 43(3): 100-104.
[5] 曾军, 王东杰, 范伟, 等. 基于红外热成像的电气设备组件识别研究[J]. 红外技术, 2021, 43(7): 679-687.
[6] 党晓婧, 刘顺桂, 朱光南, 等. 基于特征提取的电气设备红外图像识别算法[J]. 沈阳工业大学学报, 2023, 45(3): 264-269.
DANG Xiao-jing, LIU Shun-gui, ZHU Guang-nan, et al. Infrared image recognition algorithm based on feature extraction for electrical equipment[J]. Journal of Shenyang University of Technology, 2023, 45(3): 264-269.