实时采集船舶航行环境信息,不仅能提高航行安全性,还能提升航行效率,为此,研究采用主动式RFID技术的船舶航行环境信息实时采集方法。在主动式RFID标签内存储航道附近的航道与水文等航行环境信息,并安装至船舶航行的航道附近;通过触发器发射信息采集指令的低频触发信号,当主动式RFID标签进入低频触发信号范围内时,主动式RFID标签利用自身电源生成电流,并由天线发射航道与水文等环境信息的电磁波信号至RFID读写器;利用RFID读写器解码接收的电磁波信号,得到航道与水文等信息,完成船舶航行环境信息实时采集;通过概率功率控制的防碰撞算法,降低主动式RFID标签碰撞发生概率,提高信息实时采集精度。实验证明,该方法设计的触发器具备较优的信号触发性能,可有效实时采集船舶航行环境信息,且信息实时采集精度较高。
Real-time acquisition of ship navigation environment information can not only improve navigation safety, but also improve navigation efficiency. Therefore, the active RFID technology of ship navigation environment information real-time acquisition method is studied. The navigation environment information such as the navigation channel and hydrology near the navigation channel is stored in the active RFID tag, and is installed near the navigation channel of the ship; The low-frequency trigger signal of information acquisition instruction is transmitted through the trigger; When the active RFID tag enters the low frequency trigger signal range, the active RFID tag uses its own power supply to generate current, and transmits the electromagnetic wave signal of environmental information such as waterway and hydrology to the RFID reader by the antenna. Using RFID reader to decode the received electromagnetic wave signal, obtain the channel and hydrology information, complete the real-time acquisition of ship navigation environment information. Through probabilistic power control anti-collision algorithm, the collision probability of active RFID tags is reduced, and the real-time information acquisition accuracy is improved. Experiments show that the trigger designed by this method has better signal triggering performance. This method can effectively collect the information of ship navigation environment in real time, and the information real-time collection accuracy is high.
2023,45(24): 192-195 收稿日期:2023-09-12
DOI:10.3404/j.issn.1672-7649.2023.24.036
分类号:U675.75
基金项目:河南省重点研发与推广(科技攻关)项目(222102320125);河南省高等学校重点科研项目(22B510021)
作者简介:刘海燕(1972-),女,硕士,副教授,研究方向为电子信息技术应用
参考文献:
[1] 汪恒, 兰培真. 区间直觉模糊集的港口水域船舶航行环境风险评价[J]. 中国航海, 2021, 44(2): 38-44+52.
WANG Heng, LAN Peizhen. Navigational risk assessment of water areas in ports with interval valued intuitionistic fuzzy sets[J]. Navigation of China, 2021, 44(2): 38-44+52.
[2] 付洪宇, 史国友, 冉洋, 等. 基于单目相机与K均值聚类分割的船舶航行环境地图深度构建[J]. 上海海事大学学报, 2022, 43(4): 1-8.
FU Hongyu, SHI Guoyou, RAN Yang, et al. Depth construction of ship navigation environment maps based on monocular cameras and K-means clustering and segmentation[J]. Journal of Shanghai Maritime University, 2022, 43(4): 1-8.
[3] 周慧君. 顾及环境胁迫反应机制的船舶轨迹预测方法[J]. 测绘科学, 2022, 47(9): 67-75,94.
ZHOU Huijun. Vessel trajectory prediction method considering environmental stress response mechanism[J]. Science of Surveying and Mapping, 2022, 47(9): 67-75,94.
[4] 金立艳, 齐永宏, 赵明辉, 等. 气密空间多环境信息智能监测系统[J]. 中国测试, 2021, 47(12): 131-135,168.
JIN Liyan, QI Yonghong, ZHAO Minghui, et al. Multi-environmental information intelligent monitoring system for airtight space[J]. China Measurement & Testing Technology, 2021, 47(12): 131-135,168.
[5] 甘兴旺, 魏汉迪, 肖龙飞, 等. 基于视觉的船舶环境感知数据融合算法研究[J]. 中国造船, 2021, 62(2): 201-210.
GAN Xingwang, WEI Handi, XIAO Longfei, et al. Research on vision-based data fusion algorithm for environment perception of ships[J]. Shipbuilding of China, 2021, 62(2): 201-210.
[6] 徐鹤, 戴嫚嫚, 李鹏, 等. 基于反射信号特征的RFID标签和移动终端跨域互联方法[J]. 南京邮电大学学报(自然科学版), 2023, 43(2): 63-75.
XU He, DAI Manman, LI Peng, et al. A cross domain interconnection method of RFID tags and mobile terminals based on reflected signal characteristics[J]. Journal of Nanjing University of Posts and Telecommunications (Natural Science), 2023, 43(2): 63-75.