由于人工记录、手动测量等方式存在信息不及时、不准确以及局限性的问题,无法获取到实时、全面的航行数据,降低了大数据异常属性划分结果的有效性,因此提出物联网环境下船舶航行大数据异常属性划分方法。在物联网环境下利用离散度函数,加权处理船舶航行大数据属性特征。通过密度选择法,确定船舶航行大数据异常属性划分的初始聚类中心。利用属性加权快速聚类算法,结合离散度函数与初始聚类中心,完成船舶航行大数据异常属性划分。实验证明,所提出方法可有效划分船舶航行大数据异常属性。在不同大数据规模下,该方法异常属性划分的加速比均较大,即异常属性划分速度较快。
Due to the problems of untimely, inaccurate, and limited information in manual recording and measurement methods, real-time and comprehensive navigation data cannot be obtained, which reduces the effectiveness of big data anomaly attribute classification results. Therefore, a method for dividing ship navigation large data anomaly attributes in the internet of things environment is proposed. In the context of the internet of things, the discrete degree function is used to weight and process the attribute features of ship navigation big data. Determine the initial clustering center for dividing abnormal attributes of ship navigation big data through density selection method. Using attribute weighted fast clustering algorithm, combined with discrete degree function and initial clustering center, complete abnormal attribute division of ship navigation big data. The experiment proves that the proposed method can effectively classify the abnormal attributes of ship navigation big data. Under different big data scales, this method has a relatively high acceleration ratio for abnormal attribute division, which means that the speed of abnormal attribute division is faster.
2023,45(24): 204-207 收稿日期:2023-07-01
DOI:10.3404/j.issn.1672-7649.2023.24.039
分类号:TP371
作者简介:朱慧珍(1987-),女,讲师,研究方向为人工智能及数据挖掘
参考文献:
[1] 冯宏祥, ANNA Mujal Colilles, 杨忠振. 基于距离分布的AIS异常数据处理方法[J]. 中国航海, 2021, 44(4): 26-31.
FENG Hongxiang, ANNA Mujal Colilles, YANG Zhongzhen. Outlier processing of AIS data according to distance distribution[J]. Navigation of China, 2021, 44(4): 26-31.
[2] 吴金娥, 王若愚, 段倩倩, 等. 基于反向k近邻过滤异常的群数据异常检测[J]. 上海交通大学学报, 2021, 55(5): 598-606.
WU Jin'e, WANG Ruoyu, DUAN Qianqian, et al. Collective data anomaly detection based on reverse k-nearest neighbor filtering[J]. Journal of Shanghai Jiaotong University, 2021, 55(5): 598-606.
[3] 周万里, 王子谦, 谢婉利, 等. 基于二叉空间划分的异常数据检测算法[J]. 电子技术应用, 2021, 47(3): 40-43,50.
ZHOU Wanli, WANG Ziqian, XIE Wanli, et al. Binary space partition-based anomaly detection algorithm in wireless sensor networks[J]. Application of Electronic Technique, 2021, 47(3): 40-43,50.
[4] 谌裕勇, 陆兴华. 基于不相关性检验的大数据异常抽取算法[J]. 计算机仿真, 2021, 38(03): 245-248+460.
CHEN Yu-yong, LU Xing-hua. Big data anomaly extraction algorithm based on uncorrelation test[J]. Computer Simulation, 2021, 38(03): 245-248+460.
[5] 张颖, 彭然. 基于改进蜻蜓优化多核模糊聚类算法的异常检测[J]. 数学的实践与认识, 2021, 51(19): 208-219.
ZHANG Ying, PENG Ran. Anomaly detection based on improved dragonfly algorithm and multi-core fuzzy clustering algorithm[J]. Mathematics in Practice and Theory, 2021, 51(19): 208-219.
[6] 王晨华, 侯守璐, 刘秀磊. 边云协同计算中成本感知的物联网数据处理方法[J]. 计算机科学, 2022, 49(z2): 808-814.
WANG Chenhua, HOU Shoulu, LIU Xiulei. Cost-aware iot data processing in edge-cloud collaborative computing[J]. Computer Science, 2022, 49(z2): 808-814.
[7] 严莉, 张凯, 徐浩, 等. 基于图注意力机制和Transformer的异常检测[J]. 电子学报, 2022, 50(4): 900-908.
YAN Li, ZHANG Kai, XU Hao, et al. Abnormal detection based on graph attention mechanisms and transformer[J]. Acta Electronica Sinica, 2022, 50(4): 900-908.
[8] 孙菲, 厉小润, 赵辽英, 等. 基于FrFT变换和全变分正则化的异常检测算法[J]. 浙江大学学报(工学版), 2022, 56(7): 1276-1284.
SUN Fei, LI Xiaorun, ZHAO Liaoying, et al. Anomaly detection algorithm based on FrFT transform and total variation regularization[J]. Journal of Zhejiang University(Engineering Science), 2022, 56(7): 1276-1284.