水下发射技术是潜载导弹武器装备研制中的关键。本文针对燃气/蒸汽水下发射系统内混合工质的流动与传热特性进行研究,建立发射系统内部高温高压燃气流动、冷却水在超声速气流中横向喷注、雾化及蒸发数学模型,并计算发射系统通道内燃气/蒸汽混合工质的总压、静温变化和液滴的蒸发率。模拟结果显示,发射动力系统内突扩及渐扩结构对气流总压损失有着很大作用,弯管并没有产生太大的压力损失;水气质量流量比为1∶1时,液滴蒸发率可达到98%,且水射流的横向注入会增强总压的损失和减小系统出口处的静温。
Underwater launch technology is the key to the development of submarine missile weapons and equipment. In this paper, the flow and heat transfer characteristics of the gas-steam underwater launching system are studied, and the mathematical models of the high-temperature and high-pressure gas flow in the launching system, the lateral injection of cooling water in the supersonic air flow, and the atomization and evaporation of droplets are established, and calculated The total pressure, static temperature and droplet evaporation rate of the gas-steam mixed working fluid in the channel of the launching system are calculated. The simulation results show that the sudden expansion and gradual expansion structure in the launch power system has a great effect on the total pressure loss of the airflow, and the elbow does not produce too much pressure loss; when the water-to-air flow ratio of the system is 1∶1, the droplet evaporation rate can reach 98%, and injection will increase the total pressure loss and reduce the static temperature at the outlet of the system.
2023,45(24): 212-217 收稿日期:2022-12-13
DOI:10.3404/j.issn.1672-7649.2023.24.041
分类号:TJT68
作者简介:宋勇(1985-),男,硕士,高级工程师,研究方向为水下发射技术
参考文献:
[1] PAUL C, GLEN C. Submarine missile launch system[P]. United States Patent, 3857321, December, 31.
[2] 赵世平, 李江, 何国强, 等. 固体燃气发生器动力模拟水下发射试验研究[J]. 固体火箭技术, 2006, 29(1): 5-8
[3] 吕翔, 李江, 陈剑, 等. 变深度水下发射系统内弹道实验研究[J]. 固体火箭技术, 2012, 35(1): 24-28
[4] 肖虎斌, 赵世平. 燃气蒸汽式发射动力装置复杂内流场数值模拟[J]. 固体火箭技术, 2009(4): 392-395
[5] 芮守祯, 邢玉明. 导弹弹射装置冷却器中液滴轨迹及特性的数值模拟[J]. 舰船科学技术, 2010, 32(4): 113-116
[6] YANG S, LE JIALING, WEI H E, et al. Fuel atomization and droplet breakup models for numerical simulation of spray combustion in a scramjet combustor[C]//AIAA International Space Planes and Hypersonic Systems and Technologies Conference, 2013.
[7] BHANDARKAR A, MANNA P, CHAKRABORTY D. Assessment of droplet breakup models in high-speed cross-flow[J]. Atomization & Sprays, 2017: 61-79.
[8] 阎超. 计算流体力学方法及应用[M]. 北京: 北京航空航天大学出版社, 2006.
[9] 胡晓磊, 乐贵高, 马大为, 等. 喷水对冷却器流场影响数值研究[J]. 计算机仿真, 2015, 32(1): 117-121
[10] 杨琦, 郭佳肄, 胡晓磊. 喷水对燃气-蒸汽弹射内弹道影响数值研究[J]. 赤峰学院学报(自然科学版), 2016, 32(14): 191-192
[11] 李仁凤, 乐贵高, 马大为, 等. 结构参数对燃气-蒸汽弹射载荷和弹道影响[J]. 上海交通大学学报, 2016(11): 1789-1793
[12] 李仁凤, 乐贵高, 马大为, 等. 进气角与注水规律对燃气-蒸汽弹射的影响[J]. 航空动力学报, 2017(4): 961-969
[13] 胡晓磊, 孙船斌, 李仁凤, 等. 喷水孔数量对燃气-蒸汽弹射内弹道的影响[J]. 弹道学报, 2018(2): 37-41
[14] BARATA J M M, MATOS H M M, SILVA A R R. Numerical simulation of an array of evaporating droplets through a crossflow[C]//43 rd AIAA Aerospace Sciences Meeting and Exhibit. 2005: 2005.
[15] LIN K C, KENNEDY P, JACKSON T. Structures of water jets in a mach 1.94 supersonic crossflow[C]// AIAA Aerospace Sciences Meeting and Exhibit, 2004.