随着全球碳中和行动陆续推进,氨以其优异的综合性能成为实现“碳中和”过程中最具优势的零碳燃料之一。氨在实际燃烧过程中会产生一定数量的污染物(NOx、N2O和NH3等),需对尾气进行处理后排放,氨燃烧尾气排放特性及相关污染物脱除方法是其尾气处理技术开发的关键依据。通过对国内外文献资料的梳理总结,介绍氨燃烧反应原理,对当前氨燃烧尾气排放特性的研究进行分析,针对污染物NOx和N2O分别综述了其脱除方法及对应的高效催化剂,最后对氨燃烧尾气处理方案进行概述。
With the advance of global carbon neutrality, ammonia has become one of the most advantageous zero-carbon fuels in the process of "carbon neutrality" due to its excellent comprehensive performance. A certain amount of pollutants (NOx, N2O and NH3, etc.) will be produced in the actual combustion process of ammonia, which should be treated and discharged. The exhaust gas emission characteristics of ammonia combustion and the removal method of related pollutants are the basis for the development of its exhaust gas treatment technology. Through the review and summary of domestic and foreign literature, the principle of ammonia combustion reaction is introduced, the current researches on the emission characteristics of ammonia combustion are analyzed, the reduction methods of NOx and N2O and the corresponding efficient catalysts are overviewed respectively, and the treatment schemes of ammonia combustion exhaust gas are summarized.
2024,46(1): 8-14 收稿日期:2022-11-24
DOI:10.3404/j.issn.1672-7649.2024.01.002
分类号:U664.12
作者简介:王敬洲(1993-),男,博士,工程师,研究方向为船舶低碳清洁燃料
参考文献:
[1] 邹才能, 何东博, 贾成业, 等. 世界能源转型内涵、路径及其对碳中和的意义[J]. 石油学报, 2021, 42(2): 233-247.
[2] IEA. World energy outlook 2021 [M]. Paris; IEA. 2021.
[3] 楚育纯, 周梅, 王兆林, 等. 掺氨燃料在四冲程内燃机中的排放特性[J]. 厦门大学学报(自然科学版), 2021, 60(1): 50-57.
[4] 周梅, 楚育纯, 王兆林, 等. 氨-丙烷混合燃料降碳燃烧的排放特性[J]. 燃烧科学与技术, 2020, 26(3): 257-264.
[5] 王智化, 余作超, 陈晨霖, 等. 新型零碳氨燃料的燃烧特性研究进展[J]. 华中科技大学学报(自然科学版), 2022, 50(7): 24-40.
[6] TANG Y, XIE D, SHI B, et al. Flammability enhancement of swirling ammonia/air combustion using AC powered gliding arc discharges[J]. Fuel, 2022, 313: 122674.
[7] OKAFOR E C, SOMARATHNE K D K A, HAYAKAWA A, et al. Towards the development of an efficient low-NOx ammonia combustor for a micro gas turbine[J]. Proceedings of the Combustion Institute, 2019, 37(4): 4597-4606.
[8] WESTLYE F R, IVARSSON A, SCHRAMM J. Experimental investigation of nitrogen based emissions from an ammonia fueled SI-engine[J]. Fuel, 2013, 111: 239-247.
[9] REITER A J, KONG S-C. Combustion and emissions characteristics of compression-ignition engine using dual ammonia-diesel fuel[J]. Fuel, 2011, 90(1): 87-97.
[10] RYU K, ZACHARAKIS-JUTZ G E, KONG S-C. Effects of gaseous ammonia direct injection on performance characteristics of a spark-ignition engine[J]. Applied Energy, 2014, 116: 206-215.
[11] OH S, PARK C, KIM S, et al. Natural gas–ammonia dual-fuel combustion in spark-ignited engine with various air–fuel ratios and split ratios of ammonia under part load condition[J]. Fuel, 2021, 290: 120095.
[12] 赵琳, 刘庆岭, 周伟, 等. 工业烟气脱硝技术国内外研究进展[J]. 化学试剂, 2021, 43(6): 747-756.
[13] GAO F, TANG X, YI H, et al. A review on selective catalytic reduction of NOx by NH3 over Mn–based catalysts at low temperatures: catalysts, mechanisms, kinetics and DFT calculations[J]. Catalysts, 2017, 7(7): 14-25.
[14] QI G, YANG R T, CHANG R. MnOx-CeO2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures[J]. Applied Catalysis B:Environmental, 2004, 51(2): 93-106.
[15] YANG S, WANG C, LI J, et al. Low temperature selective catalytic reduction of NO with NH3 over Mn–Fe spinel: performance, mechanism and kinetic study[J]. Applied Catalysis B:Environmental, 2011, 110: 71-80.
[16] BONINGARI T, SMIRNIOTIS P G. Impact of nitrogen oxides on the environment and human health: Mn-based materials for the NOx abatement[J]. Current Opinion in Chemical Engineering, 2016, 13: 133-141.
[17] QI C, BAO W, WANG L, et al. Study of the V2O5-WO3/TiO2 catalyst synthesized from waste catalyst on selective catalytic reduction of NOx by NH3[J]. Catalysts, 2017, 7(4): 110-121.
[18] LI J, CHEN J, KE R, et al. Effects of precursors on the surface Mn species and the activities for NO reduction over MnOx/TiO2 catalysts[J]. Catalysis Communications, 2007, 8(12): 1896-1900.
[19] ZHOU C, ZHANG Y, WANG X, et al. Influence of the addition of transition metals (Cr, Zr, Mo) on the properties of MnOx–FeOx catalysts for low-temperature selective catalytic reduction of NOx by Ammonia[J]. Journal of colloid and interface science, 2013, 392: 319-324.
[20] REN Z, ZHANG H, WANG G, et al. Effect of calcination temperature on the activation performance and reaction mechanism of Ce–Mn–Ru/TiO2 catalysts for selective catalytic reduction of NO with NH3[J]. ACS Omega, 2020, 5(51): 33357-33371.
[21] NIU C, WANG B, XING Y, et al. Thulium modified MnOx/TiO2 catalyst for the low-temperature selective catalytic reduction of NO with ammonia[J]. Journal of Cleaner Production, 2021, 290: 125858.
[22] GöLDEN V, SOKOLOV S, KONDRATENKO V A, et al. Effect of the preparation method on high-temperature de-N2O performance of Na–CaO catalysts. A mechanistic study[J]. Applied Catalysis B:Environmental, 2010, 101(1): 130-136.
[23] MAUVEZIN M, DELAHAY G, KIßLICH F, et al. Catalytic reduction of N2O by NH3 in presence of oxygen using Fe‐exchanged zeolites[J]. Catalysis Letters, 1999, 62(1): 41-44.
[24] WóJTOWICZ M A, PELS J R, MOULIJN J A. Combustion of coal as a source of N2O emission[J]. Fuel Processing Technology, 1993, 34(1): 1-71.
[25] ZHANG X, SHEN Q, HE C, et al. Investigation of selective catalytic reduction of N2O by NH3 over an Fe–mordenite catalyst: reaction mechanism and O2 effect[J]. ACS Catalysis, 2012, 2(4): 512-520.
[26] RUIZ-MARTıNEZ E, SáNCHEZ-HERVáS J M, OTERO-RUIZ J. Catalytic reduction of nitrous oxide by hydrocarbons over a Fe-zeolite monolith under fluidised bed combustion conditions[J]. Applied Catalysis B:Environmental, 2004, 50(3): 195-206.
[27] 杨波, 沈岳松, 祝社民. 催化分解N2O催化剂的研究新进展[J]. 环境工程, 2012, 30(2): 114-119.
[28] YAMASHITA T, VANNICE A. N2O Decomposition over Manganese Oxides[J]. Journal of Catalysis, 1996, 161(1): 254-262.
[29] ŽEMVA P, LESAR A, KOBAL I, et al. Interpretation of kinetic isotope effects in the decomposition of N2O over CoO[J]. Chemical Physics, 2001, 264(3): 413-418.
[30] MORTERRA C, GIAMELLO E, CERRATO G, et al. Role of surface hydration state on the nature and reactivity of copper ions in Cu-ZrO2 catalysts: N2O Decomposition[J]. Journal of Catalysis, 1998, 179(1): 111-128.
[31] GAO L Z, AU C T. Studies on the decomposition of N2O over Nd2CuO4, Nd1.6Ba0.4CuO4 and Nd1.8Ce0.2CuO4[J]. Journal of Molecular Catalysis A:Chemical, 2001, 168(1): 173-186.
[32] 吴波, 庄亚辉. N2O直接分解催化剂的研究进展[J]. 环境科学进展, 1997(5): 2-18.
[33] HO P H, JABŁOŃSKA M, PALKOVITS R, et al. N2O catalytic decomposition on electrodeposited Rh-based open-cell metallic foams[J]. Chemical Engineering Journal, 2020, 379: 122259.
[34] KIWI-MINSKER L, BULUSHEV D A, RENKEN A. Active sites in HZSM-5 with low Fe content for the formation of surface oxygen by decomposing N2O: is every deposited oxygen active?[J]. Journal of Catalysis, 2003, 219(2): 273-285.
[35] SMEETS P J, MENG Q, CORTHALS S, et al. Co–ZSM-5 catalysts in the decomposition of N2O and the SCR of NO with CH4: Influence of preparation method and cobalt loading[J]. Applied Catalysis B:Environmental, 2008, 84(3): 505-513.
[36] GUZMáN-VARGAS A, DELAHAY G, COQ B. Catalytic decomposition of N2O and catalytic reduction of N2O and N2O + NO by NH3 in the presence of O2 over Fe-zeolite[J]. Applied Catalysis B:Environmental, 2003, 42(4): 369-379.
[37] WEI X, WANG Y, LI X, et al. Co3O4 supported on bone-derived hydroxyapatite as potential catalysts for N2O catalytic decomposition[J]. Molecular Catalysis, 2020, 491: 111005.
[38] BAHAA M A-Z, SOLIMAN A S, SARAH E A. 纯相和镍取代的Co3O4尖晶石催化剂用于N2O直接分解[J]. 催化学报, 2014, 35(7): 1105-1112.
[39] 王涵啸. SCR脱硝催化剂改性协同催化分解N2O的实验研究[D]. 北京: 华北电力大学, 2021.
[40] 张峰峰. Ni基复合氧化物催化分解N2O的研究[D]. 大连: 大连理工大学, 2015.
[41] ASANO K, OHNISHI C, IWAMOTO S, et al. Potassium-doped Co3O4 catalyst for direct decomposition of N2O[J]. Applied Catalysis B:Environmental, 2008, 78(3): 242-249.
[42] YOSHINO H, OHNISHI C H, HOSOKAWA S, et al. Optimized synthesis method for K/Co3O4 catalyst towards direct decomposition of N2O[J]. Journal of Materials Science, 2011, 46(3): 797-805.
[43] GRZYBEK G, STELMACHOWSKI P, GUDYKA S, et al. Insights into the twofold role of Cs doping on deN2O activity of cobalt spinel catalyst—towards rational optimization of the precursor and loading[J]. Applied Catalysis B:Environmental, 2015, 168-169: 509-514.
[44] PASHA N, LINGAIAH N, REDDY P S S, et al. Direct decomposition of N2O over cesium-doped CuO catalysts[J]. Catalysis Letters, 2009, 127(1): 101-106.
[45] PASHA N, LINGAIAH N, BABU N S, et al. Studies on cesium doped cobalt oxide catalysts for direct N2O decomposition in the presence of oxygen and steam[J]. Catalysis Communications, 2008, 10(2): 132-136.
[46] ABU-ZIED B M, BAWAKED S M, KOSA S A, et al. Effects of Nd-, Pr-, Tb- and Y-doping on the structural, textural, electrical and N2O decomposition activity of mesoporous NiO nanoparticles[J]. Applied Surface Science, 2017, 419: 399-408.
[47] J·F·格兰杰. 从气体中去除NOx和N2O的方法和装置. CN108136329B[P]. 2021.