利用冲击动力学仿真,构建多种类型的船体破口,将冲击仿真所得的船体破口形状耦合进构建的多相流计算模型中,按照069型和067型登陆艇面临的实际堵漏环境,分析不同形状船体破口、不同尺寸船体破口、不同翻边船体破口的水流出流特性。研究表明,翻边撕裂较深的破口形状出流距离要远;外翻边破口的水流出流距离呈现先小于后大于内翻边破口的规律;400 mm、300 mm和200 mm破口相比同时刻下的出流距离相差较小,但冲击压强的稳定值相差较大,400 mm破口为34 700 Pa,比300 mm破口大1 300 Pa,比200 mm破口大5 700 Pa。研究可为船体破损后的堵漏密封作业提供精准的数据支撑,也可为新型堵漏器材的设计提供技术指导。
Using impact dynamics simulation, various types of hull crevasses were constructed, and the hull crevasse shapes obtained by impact simulation were coupled into the constructed multiphase flow calculation model. The water outflow characteristics of hull crevasses of different shapes, hull crevasses of different sizes, and hull crevasses of different flanging hulls; research shows that the outflow distance of the fracture shape with deeper flanging tear is farther. The outflow distance is smaller at first and then larger than the inner flanging crevasse. Compared with the 400 mm, 300 mm and 200 mm crevasses, the outflow distances at the same time are slightly different, but the stable value of the impact pressure is quite different. The 400 mm crevasse is 34 700 Pa, 1300 Pa larger than the 300 mm crevasse and 5 700 Pa larger than the 200 mm crevasse. The research can provide accurate data support for the plugging and sealing operation after the hull is damaged, and can also provide technical guidance for the design of new plugging equipment.
2024,46(1): 21-27 收稿日期:2022-10-25
DOI:10.3404/j.issn.1672-7649.2024.01.004
分类号:U580.50
基金项目:军队横向课题资助项目(2021-JLJJ03-F3019)
作者简介:何振鹏(1985-),男,博士,副教授,研究方向为流体动力学
参考文献:
[1] HAMID S H, KIM D H, PABLO M, et al. URANS simulations for a flooded ship in calm water and regular beam waves[J]. Ocean Engineering, 2016(120): 318-330.
[2] ZHANG G Y, WUA J X, SUN Z, et al. Numerically simulated flooding of a freely-floating two-dimensional damaged ship section using an improved MPS method[J]. Applied Ocean Research, 2020(101): 207-225.
[3] JOSIP B, NASTIA D, ROKO D. Total resistance prediction ofan intact and damaged tanker with flooded tanks in calm water[J]. Ocean Engineering, 2017(130): 83-91.
[4] SIDDIQUI M A, GRECO M, LUGNI C, et al. Experimental studies of a damaged ship section in forced heave motion[J]. Applied Ocean Research, 2019(88): 254-274.
[5] HIROTADA H, KOUKI K, MAKOTO. A numerical simulation method for transient behavior of damaged ships associated with flooding[J]. Ocean Engineering, 2017(143): 282-294.
[6] KIM J S, ROH M, HAM S H. A method for intermediate flooding and sinking simulation of a damaged floater in time domain[J]. Journal of Computational Design and Engineering, 2017(4): 1-13.
[7] CAO X Y, MING F R, ZHANG A M, et al. Multi-phase SPH modelling of air effect on the dynamic flooding of a damaged cabin[J]. Computers and Fluids, 2018(163): 7-19.
[8] LEE S K, YOU J M, LEE H H, et al. Preliminary tests of a damaged ship for CFD validation[J]. International Journal of Naval Architecture and Ocean Engineering, 2012, 4(2): 172-181.
[9] RUPONEN P, KURVINEN P, SAISTO I, et al. Air compression in a flooded tank of a damaged ship[J]. Ocean Engineering, 2013(57): 64-71.
[10] 郑宇, 马宁, 顾解忡. 基于CFD的船舶破舱进水时域模拟[J]. 舰船科学与技术, 2017, 39(10): 29-33.
ZHENG Y, MA N, GU X C. Time-domain simulation of the flooding of a damaged roro ship based on CFD[J]. Ship Science and Technology, 2017, 39(10): 29-33.
[11] 李月萌, 段文洋, 金允龙, 等. 基于CFD模拟的船舶破舱进水过程研究[J]. 中国造船, 2016, 57(2): 149-163.
LI Y M, D W Y, JIN Y L, et al. Flooding process of damaged ship based on CFD simulation[J]. Shipbuilding of China, 2016, 57(2): 149-163.
[12] 卢俊尹. 基于CFD的舱室破损进水数值研究 [D]. 武汉: 华中科技大学, 2013.
[13] 陈振, 高志亮, 刘 虎. 空气可压缩性对船舶破舱进水的影响[J]. 船舶工程, 2019, 41(5): 15-19.
CHEN Z, GAO Z L, LIU H. Influence of air compressibility on ship damaged flooding[J]. Ship Engineering, 2019, 41(5): 15-19.
[14] 孙智超. 舰船多舱室破损进水仿真及抗沉决策研究 [D]. 大连: 大连海事大学, 2018.
[15] 董永香, 宋卿, 葛超, 等. 10CrNi3MoCu船钢的动态力学性能研究 [C]// 北京力学会第20届学术年会论文集, 北京, 中国 , 2014: 147−148.
DONG Y X, SONG Q, GE C, et al. Study on dynamic mechanical properties of 10CrNi3MoCu ship steel [C]//Proceedings of the 20th Annual Conference of Beijing Mechanics Society, Beijing, China, 2014: 147−148.
[16] 雷丽, 黄楠燕. T型小通道气液两相流动特性的数值研究[J]. 山东化工, 2020, 49(15): 223-225,228.
LEI L, HUANG N Y. Numerical simulation of gas-liquid two-phase flow characteristics in t-junction mini channels[J]. Shan Dong Chemical Industry, 2020, 49(15): 223-225,228.
[17] 李敏堂, 隋博, 孙栋, 等. 船艇堵漏器材水压环境与载荷分析[J]. 军事交通学院学报, 2017, 19(10): 91-95.
LI M T, SUI B, SUN D, et al. Hydraulic pressure environment and load of leak stopper for boats[J]. Journal of Military Transportation University, 2017, 19(10): 91-95.