为了探讨吊舱推进器在斜航工况下的水动力性能变化,以某豪华邮轮吊舱推进器为研究对象,采用STAR CCM+软件基于RANS(Reynolds-averaged Navier-Stokes)方法并结合标准$\kappa - \varepsilon $湍流模型,对吊舱推进器在不同进速系数和偏转角的水动力性能进行数值模拟。同时,利用拖曳水池和吊舱动力仪进行试验研究,并与仿真数据进行比较分析,进一步讨论螺旋桨与吊舱之间的相互作用对水动力性能的影响。结果表明,本文采用的数值模拟方法可较准确预测斜航工况下的水动力性能。螺旋桨推力系数、扭矩系数关于直航工况点对称,其数值随着偏转角的增大而增大;吊舱单元推力系数随着偏转角的增大而减小,吊舱侧向力随着偏转角的增大而增大;螺旋桨单元流场压力和流速在叶梢处达到最大值,吊舱左侧比右侧承担更多的表面压力幅值。
In order to investigate the hydrodynamic performance of the podded propulsor under oblique sailing condition, taking a luxury cruise ship podded propulsor as the research object, hydrodynamic performance of podded propulsor at different declination angles and advance speed coefficients were numerically solved by software STAR−CCM+ adopts the RANS method with combined standard $\kappa - \varepsilon $ turbulence model. Meanwhile, experimental investigations for hydrodynamic performance of podded propulsor at oblique sailing condition were conducted by towed tank and pod dynamical instrument. The experimental and numerical results were compared and analyzed, and the interaction between propeller and pod was analyze in detail, which results that, the hydrodynamic performance of podded propulsor can be accurately predicted by numerical simulation. The thrust and torque coefficient of the propeller are symmetric at the point of direct navigation, the value increases with the increase of deflection angle. The value of thrust coefficient of pod unit decreases with the increase of deflection angle. The lateral force of pod increases with the increase of deflection angle. The propeller unit flow field pressure and velocity reach the maximum value at the blade tip, the left side of the pod bears more surface pressure amplitude than the right side.
2024,46(1): 42-47 收稿日期:2022-11-24
DOI:10.3404/j.issn.1672-7649.2024.01.007
分类号:U661.33
作者简介:董小伟(1986-),男,硕士,高级工程师,研究方向为船舶与海洋工程设计与建造技术
参考文献:
[1] 唐文彪, 张聪, 欧阳武, 等. 大型船舶吊舱推进器发展现状[J]. 舰船科学技术, 2020, 42(7): 8-12.
TANG Wen-biao, ZHANG Cong, OUYANG Wu, et al. Development status of large ship pod propeller[J]. Ship Science and Technology, 2020, 42(7): 8-12.
[2] 袁帅, 邹璐, 邹早建, 等. 拖式吊舱推进器敞水中直航和操舵工况水动力性能数值预报[J]. 中国造船, 2020, 61(S2): 37-51.
[3] 王展智, 熊鹰, 孙海涛, 等. 直航和回转工况下吊舱推进器水动力性能数值计算方法研究[J]. 推进技术, 2016, 37(3): 593-600.
[4] 熊鹰, 盛立, 杨勇. 吊舱式推进器偏转工况下水动力性能[J]. 上海交通大学学报, 2013, 47(6): 956-961.
[5] DUBBIOSO G, MUSCARI R, DI MASCIO A. Analysis of the performances of a marine propeller operating in oblique flow[J]. Computers & Fluids, 2013, 75: 86-102.
[6] ALIMIRZAZADEH S, ROSHAN S Z, SEIF M S. Unsteady RANS simulation of a surface piercing propeller in oblique flow[J]. Applied Ocean Research, 2016, 56: 79-91.
[7] SHAMSI R, GHASSEMI H, MOLYNEUX D, et al. Numerical hydrodynamic evaluation of propeller (with hub taper) and podded drive in azimuthing conditions[J]. Ocean Engineering, 2014, 76: 121-135.
[8] ISLAM M, RYAN R, MOLYNUEX D. Numerical and experimental research on a podded propulsor[C]//International Conference on Offshore Mechanics and Arctic Engineering, 2014: V08BT06A021.
[9] 沈兴荣, 孙群, 卫燕清, 等舵角工况下吊舱推进器性能试验研究[J]. 中国造船, 2016, 57(3): 9-18.
[10] 贺伟, 陈克强, 李子如. 串列式吊舱推进器操舵工况水动力试验研究[J]. 华中科技大学学报(自然科学版), 2015, 43(1): 107-111.
[11] 赵大刚, 郭春雨, 苏玉民, 等. L型吊舱推进器直航及操舵工况水动力性能试验研究[J]. 上海交通大学学报, 2017, 51(7): 812-818.
[12] 赵鹏, 陈建勇, 张聪, 等. 基于CFD仿真与水池实验的邮轮吊舱推进器模型敞水特性研究[J]. 舰船科学技术, 2021, 43(13): 33-39.
ZHAO Peng, CHEN Jian-yong, ZHANG Cong, et al. Study on open water characteristics of cruise pod propeller model based on CFD simulation and pool experiment [J]. Ship Science and Technology, 201, 43(13) : 33-39.