本文定量研究浮式风机系统风载荷与浮式基础运动间的相互影响。建立了浮式风力机系统一体化耦合动力学分析模型,对比分析了风载荷对系缆力、浮式基础运动、机舱加速度的影响及浮式基础运动对叶片相对流速、叶片推力和发电功率的影响。结果表明,风载荷显著影响浮式基础纵荡/纵摇平均值,对其标准差影响较小;风载荷对系缆力的平均值和标准差都有一定影响,而机舱加速度受风载荷的影响并不大;浮式基础运动对叶片相对风速的标准差有显著影响,离轮毂越远位置的相对风速受基础运动影响越大,这导致浮式风机叶片推力和发电功率有很大波动。为保证平稳发电,对浮式风机控制设计时,需考虑浮式基础运动的影响。
This paper studies the interaction between the wind load and the motion of the floating foundation of the floating offshore wind turbine system quantitatively. The integrated coupling dynamics model of the floating wind turbine system was established, and the influence of wind load on mooring force, floating foundation motion, nacelle acceleration and floating foundation motion on the relative velocity of blades, blade thrust and power generation were compared and analyzed. The results show that wind load significantly affects the mean value of sway/pitch of the floating foundation, and has little effect on its standard deviation. Wind load has a certain effect on the mean value and standard deviation of mooring force, while the acceleration of the nacelle is not greatly affected by the wind load. The motion of the floating foundation has a significant influence on the standard deviation of the relative wind speed of the blades. The farther the position from the hub is, the greater the relative wind speed is affected by the foundation motion, which leads to great fluctuations in the thrust and power generation of the floating wind turbine blades. In order to ensure stable power generation, the influence of the floating foundation motion should be considered when designing the control system of the floating wind turbine.
2024,46(1): 56-62 收稿日期:2022-12-01
DOI:10.3404/j.issn.1672-7649.2024.01.010
分类号:U661.3
作者简介:杨林林(1989-),男,硕士,工程师,研究方向为海上浮式风机载荷与动力响应
参考文献:
[1] 贺德馨. 中国风能发展战略研究[J]. 中国工程科学, 2011, 13(6): 95-100.
[2] 刘中柏. 海上风电浮式基础运动特性试验研究[D]. 天津: 天津大学, 2014.
[3] JONKMAN J M, BUHL M L J. Loads analysis of a floating offshore wind turbine using fully coupled simulation: preprint[J]. Office of Scientific & Technical Information Technical Reports, 2007.
[4] MASCIOLA M, ROBERTSON A, JONKMAN J, et al. Investigation of a fast-orcaflex coupling module for integrating turbine and mooring dynamics of Offshore Floating Wind Turbines: Preprint[C]// 2011.
[5] KVITTEM M I, MOAN T. Frequency versus time domain fatigue analysis of a semisubmersible wind turbine tower[J]. Journal of Offshore Mechanics and Arctic Engineering, 2015, 137(1): 011901.
[6] BAE Y H, KIM M H, KIM H C. Performance changes of a floating offshore wind turbine with broken mooring line[J]. Renewable Energy, 2017, 101: 364-375.
[7] 刘格梁. 基于刚柔混合多体动力学的海上浮式风机系统动力耦合建模[C]//第十七届中国海洋(岸)工程学术讨论会论文集(上). 中国海洋工程学会, 2015: 88-93.
[8] 宋娜, 刘昆, 王自力. 气动载荷对半潜式海上风机运动响应的影响[J]. 船舶工程, 2020, 42(4): 137-143.
SONG Na, LIU Kun, WANG Zili. Influence of aerodynamic load on motion response of semi-submersible floating wind turbine[J]. Ship Engineering, 2020, 42(4):137−143.
[9] 肖昌水. 海上浮式风机气动载荷及刚—柔耦合动力响应研究[D]. 天津: 天津大学, 2018.
[10] ROBERTSON A, JONKMAN J, MASCIOLA M, et al. Definition of the semisubmersible floating system for phase Ⅱ of OC4[R]. Technical Report, 2014.
[11] 刘周, 樊天慧, 陈超核, 等. 3种典型半潜式浮式风机基础水动力性能比较[J]. 中国海洋平台, 2021, 36(2): 1-10.
LIU Zhou, FAN Tianhui, CHEN Chaohe, et al. Comparison on hydrodynamic performance of three kinds of typical semi-submersible floating foundations of offshore wind turbine[J].China Offshore Platform, 2021, 36(2): 1−10.
[12] MATHA D, SCHLIPF M, CORDLE A, et al. Challenges in simulation of aerodynamics, hydrodynamics, and mooring-line dynamics of floating offshore wind turbines[J]. International Society of Offshore and Polar Engineering, 2011: 19-24.
[13] 刘利琴, 肖昌水, 郭颖. 海上浮式水平轴风力机气动特性研究[J]. 太阳能学报, 2021, 42(1): 294-301.
Liu Liqin, Xiao Changshui, Guo Ying. Study on aerodynamic characterisiics of floating horizontal wind turbine[J]. Acta Energiae Solaris Sinica, 2021, 42 (1): 294-301.
[14] 张若瑜, 唐友刚, 刘利琴, 等. 不同因素对于深海系泊系统动张力的影响分析[J]. 天津大学学报, 2011, 44(4): 313-318.
ZHANG Ruo-yu, TANG You-gang, LIU Li-qin, et al. Effect of different conditions on dynamic tension of mooring system in deep sea[J]. Journal of Tianjin University, 2011, 44 (4): 313−318.
[15] 肖定玉. 12MW海上漂浮式风机叶片设计与有限元分析[D]. 厦门: 厦门理工学院, 2021.
[16] FALTINSEN O. Sea loads on ships and offshore structures[M]. Cambridge: Cambridge University Press, 1993: 10-20.