为探究沙漏型FPSO的砰击压强特性,采用两步法对浮体在典型波浪环境下砰击次数和砰击压强展开研究。基于波浪势流理论计算沙漏型FPSO在典型波浪环境的运动响应,利用多项式拟合浮体典型剖面在入水前后时刻的垂向速度时间历程曲线;基于计算流体力学理论数值模拟浮体二维剖面入水砰击压强。模拟结果表明,具有优异水动力性能的沙漏型浮体,距离水线面越近的横剖面平均入水砰击次数和有效砰击速度越大;最大砰击压强区域在沙漏型FPSO上浮体舷侧的两端;底部形状越平或曲率半径越来越大,二维剖面的砰击压强峰值越大。
In order to explore the characteristics of the sandglass-type FPSO, two-step method is used to study the numbers and pressure of slamming of floating body in typical wave environment. Motion response of the sandglass-type FPSO in waves is computed based on potential wave theory, and vertical velocity of a 2D cross section during water-entry is handled with polynomial fitting method. Slamming pressure on the section is numerically simulated with computational fluid dynamic(CFD)method. The simulation results show that the sandglass-type float with excellent hydrodynamic performance has higher average times of numbers of slamming and effective velocity of water entry along the cross section nearer to the water line surface. The maximum slamming pressure area is at both ends of the floating body side on the sandglass-type FPSO. The flatter the bottom shape or the larger the radius of curvature, the larger the peak of slamming pressure in the two-dimensional profile.
2024,46(1): 68-75 收稿日期:2023-01-03
DOI:10.3404/j.issn.1672-7649.2024.01.012
分类号:U674
基金项目:国家自然科学基金资助项目(51879064)
作者简介:张帆(1997-),男,硕士研究生,研究方向为海洋可再生能源技术
参考文献:
[1] 姚宇鑫, 王文华, 黄一. 新型沙漏式浮式生产储油系统的概念设计分析[J]. 上海交通大学学报, 2014, 48(4): 558-564.
YAO Yuxin, WANG Wenhua, HUANG Yi. Conceptual design analysis of a new type of hourglass floating production and storage system[J]. Journal of Shanghai Jiaotong University, 2014, 48(04): 558-564.
[2] 姚宇鑫. 新概念沙漏型FDPSO主浮体和系泊系统设计方法研究 [D]. 大连: 大连理工大学, 2015.
[3] WANG W-H, WANG L-L, DU Y-Z, et al. Numerical and experimental analysis on motion performance of new sandglass-type floating body in waves[J]. Marine Structures, 2016, 46: 56-77.
[4] 高浩. 新型沙漏式FDPSO的典型控制载荷工况分析[J]. 中国造船, 2017, 58(2): 97-107.
GAO Hao. Analysis of typical control load conditions for a new type of hourglass FDPSO[J]. China Shipbuilding, 2017, 58(2): 97-107.
[5] 刘兆瑞. 浅水浪流作用下沙漏型FPSO的动力响应研究 [D]: 大连: 大连理工大学, 2019.
[6] AVALOS G O G, WANDERLEY J B V, FERNANDES A C, et al. Roll damping decay of a FPSO with bilge keel[J]. Ocean Engineering, 2014, 87: 111-120.
[7] WANG W-H, DU Y-Z, WANG L-L, et al. Experimental analysis on behaviour in waves for sandglass-type floating body[J]. Ships and Offshore Structures, 2016, 12(3): 433-441.
[8] WAGNER H. Über Stoß‐ und gleitvorgänge an der oberfläche von flüssigkeiten[J]. ZAMM ‐ Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 1932, 12(4): 193-215.
[9] VON KARMAN T H. The impact on seaplane floats during landing [Z]. 1929.
[10] FALTINSEN O M. Slamming on ships and marine structures[J]. Marine Systems & Ocean Technology, 2013, 8(1): 21-37.
[11] 宋竞正, 任慧龙, 戴仰山. 船体非线性波浪载荷的水弹性分析[J]. 中国造船, 1995(2): 22-31.
SONG Jingzheng, REN Huilong, DAI Yangshan. Hydroelastic analysis of ship hull nonlinear wave loads[J]. China Shipbuilding, 1995(2): 22-31.
[12] OCHI M K, MOTTER L E. Prediction of slamming characteristics and hull response for ship design[J]. Trans SNAME, 1973, 81: 144-76.
[13] 李阔鹏. 近海风电设备安装船的耐波性研究 [D]. 大连: 大连理工大学, 2016.