针对具有未知谐波干扰的船舶动力定位控制问题,设计自适应干扰抵消控制策略。海洋环境扰动被表示为参数未知且系统矩阵所有特征值位于虚轴上外部系统的输出向量,构造观测器提供外部系统状态向量的在线估计值,使船舶扰动补偿转化为自适应控制问题。利用自适应动态面控制设计干扰抵消控制律,指令滤波器和辅助动态系统被引入降低输入饱和的影响。理论证明控制律能够使得船舶位置和航向角保持在期望值上,同时保证闭环动力定位控制系统所有信号一致最终有界。仿真结果验证了自适应干扰抵消控制的有效性。
In this paper, an adaptive disturbance rejection control scheme is proposed for the dynamic positioning of ships with unknown harmonic disturbances. The ocean environmental disturbances are expressed by the output vector of an unknown parametric exogenous system with the eigenvalues of the system matrix lying on the imaginary axis. An observer is constructed to provide the on-line estimations of the unknown state vector of the exogenous system such that the disturbance compensation is converted into the adaptive control problem. The adaptive dynamic surface control is employed to design the adaptive disturbance rejection control law. The command filter and the auxiliary dynamic system are inserted to reduce the input saturation effects. The theoretical proof shows that the designed adaptive disturbance rejection control law can maintain the position and heading of the ship on the desired values and guarantee that all signals in the closed-loop dynamic positioning control system are uniformly ultimately bounded. Simulation results validate the adaptive disturbance rejection control.
2024,46(1): 76-81 收稿日期:2022-11-15
DOI:10.3404/j.issn.1672-7649.2024.01.013
分类号:U661.3
基金项目:国家自然科学基金资助项目(62273172,61903174,U2006229);山东省重大创新工程项目(2020CXGC010701,2020CXGC010702,2021CXGC010702);山东省重点研发计划院士团队支持项目(2020ZLYS11);烟台市科技计划项目(2021ZDCX001);烟台新旧动能转换研究院科研项目(2020XJDN004);山东省高等学校优秀青年创新团队项目(2021KJ042);山东省自然科学基金培养基金项目(ZR2019PF006);山东省海上航天装备技术创新中心开放课题(MAETIC2021-01)
作者简介:李磊(1981-),男,硕士,高级工程师,研究方向为船舶与海洋装备研发设计。
参考文献:
[1] 廖成毅, 杨颖, 吉宇人. 船舶动力定位控制策略研究综述[J]. 舰船科学技术, 2020, 42(9): 1-5.
LIAO Chengyi, YANG Ying, JI Yuren. Research on ship dynamic positioning control strategies[J]. Ship Science and Technology, 2020, 42(9): 1-5.
[2] FOSSEN T I, PEREZ T. Kalman filtering for positioning and heading control of ships and offshore rigs[J]. IEEE Control Systems Magazine, 2009, 29(6): 32-46.
[3] BALCHEN J G, JENSSEN N A, MATHISEN E, et al. Dynamic positioning of floating vessels based on Kalman filtering and optimal control[C]//Proceedings of the 19th IEEE Conference on Decision and Control, Albuquerque, New Mexico, IEEE, 1980: 852−864.
[4] GRIMBLE M. J, PATTON R J, WISE D A. Use of Kalman filtering techniques in dynamic ship positioning systems[J]. IEE Proceedings D-Control Theory and Applications, 1980, 127(3): 93-102.
[5] GRøVLEN Å, FOSSEN T I. Nonlinear control of dynamic positioned ships using only position feedback: an observer backstepping approach[C]//Proceedings of the 35th IEEE Conference on Decision and Control, Kobe, Japan, IEEE, 1996: 3388–3393.
[6] FOSSEN T I, GRøVLEN Å. Nonlinear output feedback control of dynamically positioned ships using vectorial observer backstepping[J]. IEEE Transactions on Control Systems Technology, 1998, 6(1): 121-128.
[7] FOSSEN T I, STRAND J P. Passive nonlinear observer design for ships using Lyapunov methods: full-scale experiments with a supply vessel[J]. Automatica, 1999, 35(1): 3-16.
[8] 杜佳璐, 杨杨, 胡鑫, 等. 基于动态面控制的船舶动力定位控制律设计[J]. 交通运输工程学报, 2014, 14(5): 36−50.
DU Jialu, YANG Yang, HU Xin, et al. Control law design of dynamic positioning for ship based on dynamic surface control[J]. Journal of Traffic and Transportation Engineering, 2014, 14(5): 36−42.
[9] 邹俊杰. 抗随机干扰的船舶动力系统混合控制方法[J]. 舰船科学技术, 2022, 44(22): 106-109.
ZOU Junjie. Hybrid control method for ship power system against random disturbance[J]. Ship Science and Technology, 2022, 44(22): 106-109.
[10] OHISHI K, NAKAO M, OHNISHI K, et al. Microprocessor controlled DC motor for load-insensitive position servo system[J]. IEEE Trans on Industrial Electronics, 1987, 34(1): 44-49.
[11] CHEN Wenhua, BALANCE D J, GAWTHROP P J. A nonlinear disturbance observer for robotic manipulators[J]. IEEE Transactions on Industrial Electronics, 2000, 47(4): 932-938.
[12] WEI Xin Jiang, GUO Lei. Composite disturbance-observer-based control and H-infinite control for complex continuous models[J]. International Journal of Robust and Nonlinear Control, 2010, 20(1): 106-118.
[13] 图雅, 杜佳璐, 刘文吉. 船载三自由度并联稳定平台的设计及运动学分析[J]. 舰船科学技术, 2022, 44(5): 154-157.
TU Ya, DU Jia-lu, LIU Wen-ji. Design and kinematics analysis of 3-DOF ship-borne parallel stabilization platform[J]. Ship Science and Technology, 2022, 44(5): 154-157.
[14] NIKIFOROV V O. Nonlinear servocompensation of unknown external disturbances[J]. Automatica, 2001, 37: 1647-1653.