为了进一步提高船舶能耗效率,本文提出一种基于BP人工神经网络与遗传算法的航速优化技术路线。首先,介绍常见油耗模型的构建方法;其次,利用BP人工神经网络建立目标船舶的油耗模型。模型预测的平均绝对误差为2.3%,准确度和泛化能力基本满足工程应用要求。最后,利用遗传算法,并基于历史气象数据对目标船舶的航线做分段航速优化。计算结果表明,航速优化后目标船舶的航行时长不仅能减少1.35天,燃油损耗还可节省10.1%,由此说明对航行船舶做分段航速优化是一种可行方案。
In order to further improve the energy efficiency of ships, a speed optimization technology route based on BP artificial neural network and genetic algorithm is proposed. First of all, some methods for constructing fuel consumption models are briefly introduced. Secondly, the BP artificial neural network was used to establish the fuel consumption model of the target ship, and the average absolute error of the model prediction was 2.3%, and the accuracy and generalization ability basically met the requirements of engineering applications. Finally, genetic algorithm is used to optimize the segmented speed of the target ship based on historical meteorological data. The calculation results show that the sailing time of the target ship can not only be reduced by 1.35 days, but also save fuel loss by 10.1% after speed optimization, which indicates that segmented speed optimization of sailing ships is a feasible solution.
2024,46(1): 82-87 收稿日期:2022-11-30
DOI:10.3404/j.issn.1672-7649.2024.01.014
分类号:U699
作者简介:陈映彬(1988-),男,硕士,研究方向为船舶航速优化
参考文献:
[1] 袁裕鹏, 王康豫, 尹奇志, 等. 船舶航速优化综述[J]. 交通运输工程学报, 2020, 20(6): 18-34.
[2] 孙超, 张均东, 刘超. 基于航速与实时能效综合目标的船舶主机转速优化[J]. 大连海事大学学报, 2020, 46(3): 60-67.
[3] 李铮, 潘晓萌. 船舶航速优化算法研究[J]. 舰船科学技术, 2016, 38(12): 7-9.
[4] 马征. 船舶期租经营中的航速油耗索赔问题研究[J]. 珠江水运, 2019(19): 60-61.
[5] 查安平. 航速优化下小型船舶调度目标选取优化方法分析[J]. 舰船科学技术, 2021, 43(14): 34-36.
[6] 计明军, 张开放, 祝慧灵, 等. 基于可变航速的支线集装箱船舶调度优化模型与算法[J]. 运筹与管理, 2019, 28(11): 18-26.
[7] 马冉祺, 黄连忠, 魏茂苏, 等. 基于实船监测数据的定航线船舶智能航速优化[J]. 大连海事大学学报, 2018, 44(1): 31-35.
[8] 丁坤平. 基于权重法与遗传算法的船舶定航线多目标航速优化[D]. 哈尔滨: 哈尔滨工程大学, 2021.
[9] 李佳欣. 考虑港口拥堵的电煤航运船舶调度与航速优化研究[D]. 南京: 东南大学, 2021.
[10] K W, J L I, L H, et al. An energy efftciency optimization methodfor inland ship fleet considering multiple influencing factors[C]//2019 5th International Conference on Transportation Information and Safety (ICTIS), IEEE, 2019: 1263-1267.
[11] B S, B N, H X, et al. Cooperative optimization for port and shipping line with unpredictable disturbance consideration[C]//2018 14th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), 2018: 113-118.
[12] CHEAITOU A, LARBI R, HAMDAN S. Liner shipping routing, fleet sizing and speed optimization with application to Asia-Northern Europe-trade[C]//IEEE, 2018: 1-8.
[13] JIN Xiaochuang, QUAN Xiongwen, CHEN Qiushuang, et al. Speed optimization for a container shipping route in competitive environment[C]//Technical Committee on Control Theory, Chinese Association of Automation, 2015: 8446-8451.
[14] WANG K, YAN X, YUAN Y, et al. Study on route division for ship energy efficiency optimization based on big environment data[C]//2017 4th International Conference on Transportation Information and Safety (ICTIS), IEEE, 2017: 111-116.
[15] 曹子涵, 明岭峰, 陈焕新, 等. 基于随机优化算法的建筑热环境灰箱模型开发与验证[J]. 制冷技术, 2021, 41(2): 24-29.
[16] 张焱飞, 李荣宗, 文逸彦, 等. 基于人工神经网络的实船航行主机能耗预估自学习模型[J]. 上海船舶运输科学研究所学报, 2019, 42(2): 34-37.
[17] 丁琦, 赵科. 船舶智能能效管理系统设计[J]. 舰船科学技术, 2020, 42(11): 144-147.
[18] 冯亮, 董国祥, 季盛, 等. 基于航行数据的船舶航行油耗模型建立方法[J]. 上海船舶运输科学研究所学报, 2020, 43(1): 27-31.
[19] 赵宏伟, 任震. 面向机组最优投入的改进遗传算法及其应用[J]. 系统工程学报, 1998(2): 92-97.