针对二维机动目标,在考虑水声实时通信延迟与通信周期的基础上,对 AUV 中远距离巡航、近距离末端制导全流程进行分析。基于相对运动模型进行剩余时间计算,设计一种变比例系数和速度时变的多阶段协同制导律,使用李雅普诺夫有限时间收敛原理对模型进行稳定性验证,并对全流程进行仿真模拟。仿真结果证明了该协同制导方法具有较高精度。针对不同通信延迟与周期情况下的仿真结果体现的差异进行分析研究,结果表明通信延迟是导致参数调节波动的根本原因,而通信周期是影响误差收敛速度与参数波动幅值的主要因素,通信周期越大对AUV的机动性能要求越高。
This paper analyze the whole process of AUV guidance for two-dimensional maneuvering targets, which is divided into two phases, based on the consideration of hydroacoustic real-time communication delay and communication period, and carry out the residual time calculation based on the relative motion model, and design a two-phase coordinated guidance law with variable scale coefficients and time-varying speeds, and validate the stability of the model by using the Lyapunov finite time convergence principle, and simulate the whole process. The simulation results prove that the cooperative guidance method has high accuracy, and the differences in the simulation results under different communication delays and periods are analyzed and studied, which show that the communication delay is the root cause of the fluctuation of parameter regulation, while the communication period is the main factor affecting the speed of error convergence and the amplitude of parameter fluctuation, and the larger the communication period is, the higher the mobility requirements for AUVs are.
2024,46(1): 94-101 收稿日期:2023-09-11
DOI:10.3404/j.issn.1672-7649.2024.01.016
分类号:U674.76
基金项目:国防科技创新特区项目(23-TQ02-01-ZT-01-003)
作者简介:张壹(1999-),男,硕士研究生,研究方向为船舶与海洋结构物设计制造
参考文献:
[1] JEON In-Soo, LEE Jin-Ik, TAHK Min-Jea. Impact-time-control guidance law for anti-ship missiles[J]. IEEE Transactions on Control Systems Technology, 2006, 14(2), 260–266.
[2] 张友安, 马国欣, 王兴平. 多导弹时间协同制导: 一种领弹-被领弹策略[J]. 航空学报, 2009, 30(6): 1109-1118.
[3] CHEN Z, CHEN W, LIU X, et al. Three-dimensional fixed-time robust cooperative guidance law for simultaneous attack with impact angle constraint[J]. Aerospace Science and Technology, 2021, 110, 106523.
[4] DONG W, WANG C, WANG J, et al. Three-dimensional nonsingular cooperative guidance law with different field-of-view constraints[J]. Journal of Guidance, Control, and Dynamics, 2021, 44(11): 2001-2015.
[5] ZHAI S, WEI X, YANG J. Cooperative guidance law based on time-varying terminal sliding mode for maneuvering target with unknown uncertainty in simultaneous attack[J]. Journal of the Franklin Institute, 2019.
[6] YU H, DAI K, LI H, et al. Cooperative guidance law for multiple missiles simultaneous attacks with fixed-time convergence[J]. International Journal of Control, 2022: 1-14.
[7] ZHAO Qilun, DONG Xiwang, LIANG Zixuan. Distributed group cooperative guidance for multiple missiles with fixed and switching directed communication topologies[J]. Nonlinear Dynamics, 2017, 90(4): 2507-2523.
[8] 马文卉, 符文星, 方洋旺, 等. 通信拓扑切换下的预定时间分组协同制导方法[J]. 宇航学报, 2023, 44(1): 86-98.
[9] 叶鹏鹏, 盛安冬, 张蛟, 等. 非持续连通通信拓扑下的多导弹协同制导[J]. 兵工学报, 2018, 39(03): 474-484.
[10] 王青, 后德龙, 李君. 存在时延和拓扑不确定的多弹分散化协同制导时间一致性分析[J]. 兵工学报, 2014, 35(7): 982-989.9.
[11] 姜尚, 孙东彦, 梁伟阁, 等. 考虑通信延迟的网络化弹药多约束协同策略[J/OL]. 电子学报: 1-11. [2023-08-06]
[12] Olfati-Saber R, MURRAY R M. Consensus problems in networks of agents with switching topology and time-delays[J]. IEEE Transactions on Automatic Control, 2004, 49(9): 1520–1533.
[13] GUO J, XIONG Y, ZHOU J. A new sliding mode control design for integrated missile guidance and control system[J]. Aerospace Science and Technology, 2018, 78, 54–61.
[14] JEON I S, LEE J I, TAHK M J. Homing guidance law for cooperative attack of multiple missiles[J]. Journal of Guidance, Control and Dynamics, 2010, 33(1), 275–280.