自水下无人航行器出现以来,关于其发电和储能系统的研究就从未停止。对适合长期部署的自供电水下无人航行器的需求一直在增长,需进一步研究小规模海洋梯度能源系统。本文综述了利用海洋热能(海水温差、相变材料和热电发生器)和海洋环境能(风能、太阳能和波浪能)的发电技术,总结其优缺点。同时,介绍目前及未来用于水下无人航行器的储能电池,包括锂电池、燃料电池、半燃料电池等。最后,对水下无人航行器电池的未来发展方向进行讨论,为其发电及储能技术发展提供一定参考。
Since the invention of unmanned underwater vehicles (UUV), research on its power generation and energy storage systems has never stop. The growing demand for self-powered UUV suitable for long-term deployment requires further research into small-scale ocean gradient energy systems. In this paper, we review the advantages and disadvantages of power generation technologies utilizing ocean thermal energy (ocean thermal energy conversion, phase change materials, and thermoelectric generator) and ocean environmental energy (wind, solar, and wave energy). At the same time, the energy storage batteries for UUV, including lithium batteries, fuel cells, and semi-fuel cells, are introduced. Finally, the future development directions of UUV batteries are discussed, in order to provide certain guidance for the development of power generation and energy storage technology.
2024,46(1): 115-120 收稿日期:2022-10-14
DOI:10.3404/j.issn.1672-7649.2024.01.019
分类号:TJ67
基金项目:广州市基础与应用基础研究资助项目(202102021102)
作者简介:黄文飞(1986-),男,博士研究生,研究方向为电池材料、储能材料及热管理界面材料制备
参考文献:
[1] SOWERS D, DIJKSTRA JA, MELLO K, et al. Application of the coastal and marine ecological classification standard to Gosnold Seamount, North Atlantic Ocean[J]. Seafloor Geomorphology as Benthic Habitat (Second Edition), 2020: 903–16.
[2] WANG G, YANG Y, WANG S. Ocean thermal energy application technologies for unmanned underwater vehicles: a comprehensive review[J]. Appl Energy, 2020, 278(15): 115752.
[3] 陈强, 张林根. 美国军用UUV现状及发展趋势分析[J]. 舰船科学技术, 2010, 32(7): 129–134.
[4] 王迅, 李赫, 谷琳. 海水温差能发电的经济和环保效益[J]. 海洋科学, 2008, 11: 84-87.
[5] MARTAJ N, GROSU L, ROCHELLE P. Thermodynamic study of a low temperature difference stirling engine at steady state operation[J]. International Journal of Thermodynamics, 2007, 10: 165-76.
[6] WANG G, YANG Y, WANG S, et al. Efficiency analysis and experimental validation of the ocean thermal energy conversion with phase change material for underwater vehicle [J]. Appl Energy, 2019, 248: 475–488.
[7] JUNG, H, SUBBAN, CV , MCTIGUE, JD, et al. Extracting energy from ocean thermal and salinity gradients to power unmanned underwater vehicles: State of the art, current limitations, and future outlook [J]. Renewable & Sustainable Energy Reviews, 2022, 160, 112283.
[8] LIU L. Large-scale ocean-based or geothermal power plants by thermoelectric effects[J]. Physics: 1205. 1562, 2012.
[9] LEE W, SCHUBERT MJW, OOI B, et al. Multi-source energy harvesting and storage for floating wireless sensor network nodes with long range communication capability [J]. IEEE Transactions on Industry Applications, 2018; 54: 2606–15.
[10] BUCKLE JR, KNOX A, SIVITER J, et al. Autonomous underwater vehicle thermoelectric power generation[J]. Journalof Electronicmaterials, 2013; 42: 20–22.
[11] FALCAO Carneiro J, GOMES de Almeida F. Model and simulation of the energy retrieved by thermoelectric generators in an underwater glider[J]. Energy Conversion and Management, 2018, 163: 38–49.
[12] PONTES M T. Implementing agreement on ocean energy systems[C]//International Conference on Offshore Mechanics and Arctic Engineering. 2007, 42711: 609-613.
[13] DU X, ZHANG M, KANG H, et al. Theoretical study on a novel piezoelectric ocean wave energy harvester driven by oscillating water column[J]. Energy Sources. Part A, Recovery, utilization, and environmental effects, 2021: 1−21.
[14] DEUCHARS G D, HILL J R, STANNARD J H, et al. Aluminum-hydrogen peroxide power system for an unmanned underwater vehicle[C]//Proceedings of OCEANS'93. IEEE, 1993 (2): 158−165.
[15] HEO J, KIM J, KWON Y. Technology development of unmanned underwater vehicles (UUVs)[J]. Journal of Computer and Communications, 2017, 5(7): 28−35.