为研究航行体不同俯仰角入水空化演变规律及空泡流体特性,基于Realizable k-ε湍流模型和VOF多相流模型,建立航行体不同俯仰角入水数值模型,开展数值方法验证,数值模拟结果与实验测试结果吻合。基于此,研究航行体入水空化过程演变机理及其不同俯仰角水空泡内流体分布规律和空化阶段演变特性。研究结果表明,依据空泡内流体分布变化规律空化过程可分为空泡的表面闭合阶段、饱和阶段、深度闭合阶段和溃灭阶段;在入水速度一定的情况下随航行体入水俯仰角增大空泡生成速率降低、空泡内的水蒸汽体积增长率减小、水蒸汽体积含量峰值变小、空泡饱和阶段的空气体积变大,体积范围为6%~9%;空泡表面闭合无量纲时间随入水俯仰角从-10°变化到10°呈对数趋势增长,空泡饱和无量纲时间近似线性递减,空泡深度闭合无量纲时间基本不受俯仰角变化影响。
A numerical simulation method was established based on the Realizable k-ε turbulence model and the VOF multiphase flow model to study the evolution of the cavitation law and the characteristics of the cavity fluid at different pitch angles of the vehicle.A numerical model of the vehicle entering the water at different pitch angles was established, and the verification of the numerical method was carried out, and the numerical simulation results agreed with the experimental test results. On this basis, the evolution mechanism of the cavitation process of the vehicle into the water and its fluid distribution law and cavitation stage evolution characteristics in the cavity at different pitch angles are studied. The results show that the cavitation process can be divided into surface closure, saturation, deep closure and collapse stages of the cavity according to the change of fluid distribution in the cavity. In the case of a certain speed of water entry with the vehicle into the water pitch angle increases the rate of cavity generation decreases, the growth rate of water vapor volume in the cavity decreases, the peak water vapor volume content becomes smaller, and the volume of air in the saturation phase of the cavity becomes larger. Cavity surface closure dimensionless time grows logarithmically with the change of pitch angle from -10° to 10°, cavity saturation dimensionless time decreases approximately linearly, and cavity depth closure dimensionlesstime is basically not affected by the change of pitch angle.
2024,46(2): 8-14 收稿日期:2023-01-10
DOI:10.3404/j.issn.1672-7649.2024.02.002
分类号:O359
基金项目:国家自然科学基金资助项目(61505169)
作者简介:王立斌(1998-),男,硕士研究生,研究方向为航行体跨介质飞行
参考文献:
[1] 王浩宇, 李木易, 程少华, 等. 航行体高速入水问题研究综述[J]. 宇航总技术, 2021, 5(3): 65-70.
WANG H Y, LI M Y, CHENG SH H, et al. Review of vehicle's high-speed water entry[J]. Astronautical Systems Engineering Technology, 2021, 5(3): 65-70.
[2] BOTTOMLEY G H. The impact of a model seaplane floaton water [J]. Report s and Memoranda, 1919.
[3] WATANABE S. Resistance of impact on water surface. Part V-sphere[J]. Scientific papers of the Institute of Physical and Chemical Research of Japan, 1934, 23(484): 202-208.
[4] WORTHINGTON A M, COLER S. Impact with a liquid surface, studied by the aid of instantaneous photography[J]. Philosophical Transactions of the Royal Society a Mathematical Physical and Engineering Sciences, 1900, 194(252-261): 175-199.
[5] 董鹏, 崔自宪, 丁晓冬. 粗糙表面水下航行体阻力特性分析[J]. 舰船科学技术, 2022, 44(23): 1-5.
DONG P, CUI Z X, DING X D. Resistance analysis of underwater vehicle with tough surface[J]. Ship Science and Technology, 2022, 44(23): 1-5.
[6] 程栋, 卢丙举, 朱珠. 航行体出筒过程中弹翼横向偏移研究[J]. 舰船科学技术, 2022, 44(19): 178-183.
LI CHENG D, LU B J, ZHU Z. Lateral displacement of wing on process launching submersible tactical vehicle[J]. Ship Science and Technology, 2022, 44(19): 178-183.
[7] 谢超, 樊华, 周景军, 等. 超空泡航行体自导作用距离需求分析[J]. 舰船科学技术, 2022, 44(8): 79-83.
XIE C, FAN H, ZHOU J J, et al. Analysis of necessary homing distance of supercavitating vehicle[J]. Ship Science and Technology, 2022, 44(8): 79-83.
[8] 胡芳芳, 陈静, 涂卫民, 等. 围壳对水下航行体水动力系数的影响特性研究[J]. 舰船科学技术, 2022, 44(7): 31-36.
HU F F, CHEN J, TU W M, et al. Numerical study on effect of sail on hydro-coefficient of the underwater vehicle[J]. Ship Science and Technology, 2022, 44(7): 31-36.
[9] 邹志辉, 李佳, 杨茂, 等. 喷气协助航行体入水空泡流动特性实验研究[J]. 弹道学报, 2022, 34(1): 1-8+97.
ZOU ZH H, LI J, YANG M, et al. Experimental investigation on cavity flow characteristics of water entry of vehicle with gas jet cavitator[J]. Journal of Ballistics, 2022, 34(1): 1-8+97.
[10] 鱼怡澜, 施瑶, 潘光, 等. 超空泡航行体高速入水空泡与载荷特性数值分析[J]. 西北工业大学学报, 2022, 40(3): 584-591.
YU Y L, SHI Y, PAN G, et al. Numerical analysis of cavitation and load characteristics of supercavitating vehicle entering water at high speed[J]. Journal of Northwestern Polytechnical University, 2022, 40(3): 584-591.
[11] 马庆鹏, 何春涛, 王聪, 等. 球体垂直入水空泡实验研究[J]. 爆炸与冲击, 2014, 34(2): 174-180.
MA Q P, HE CH T, WANG C, et al. Experimental investigation on vertical water-entry cavity of sphere[J]. Explosion and Shock Waves, 2014, 34(2): 174-180.
[12] ZHAO CH G, WANG C, WEI Y J, et al. Experimental study on oblique water entry of vehicles[J]. Modern Physics Letters B, 2016, 30(28): 1650348.
[13] SCHNERR G H, SAUER J. Physical and numerical modeling of unsteady cavitation dynamics[C]//Fourth International Conference On Multiphase Flow, New Orleans, LO, USA: I CMF New Orleans, 2001.
[14] 李龙, 张宏伟, 王延辉. 无人自治水下航行器外形及推进系统优化设计[J]. 机械设计, 2017, 34(5): 23-29.
LI L, ZHANG H W, WANG Y H. Autonomous underwater vehicle appearance and propulsion system optimization design[J]. Journal of Machine Design, 2017, 34(5): 23-29.
[15] 胡明勇, 张志宏, 刘巨斌, 等. 低亚声速射弹垂直入水的流体与固体耦合数值计算研究[J]. 兵工学报, 2018, 39(3): 560-568.
HU M Y, ZHANG ZH H, LIU J B, et al. Fluid-solid coupling numerical simulation on vertical water entry of vehicle at low subsonic speed[J]. Act a Armamentarii, 2018, 39(3): 560-568.