对双层不锈钢圆柱壳在均匀轴压下的屈曲性能进行研究,分别设计、制作和测量了3个名义相同的双层圆柱薄壳,其长径比均为1.7。通过对试样进行轴向压缩试验获得其载荷位移曲线和极限强度,采用弧长法对试样进行非线性屈曲分析,得到平衡曲线和临界载荷并与试验结果进行对比。另外采用数值分析法研究双层圆柱壳的缺陷敏感性,进而推测出一种用于评估双层圆柱壳承载能力的理论公式。结果表明,双层圆柱壳的平均极限强度约为单层的1.85倍,双层圆柱壳是缺陷敏感结构,其缺陷敏感性与内层壳体缺陷敏感性趋于一致,且双层圆柱壳的缺陷敏感性随长径比的增加而降低,试验结果、数值计算和理论预测具有较高一致性。
In order to study the buckling performance of double-layer(DL) stainless steel cylindrical shells under uniform axial compression, three DL cylindrical shells with nominally identical are designed, fabricated, and measured. The length-to-diameter ratio of all cylindrical shells is 1.7. In this paper, the load-displacement curve and ultimate strength of cylindrical shells are obtained by axial compression test. The arc length method is used to analyze the nonlinear buckling behavior of cylindrical shells, therefore, the equilibrium curve and critical load are obtained and compared with the test results. In addition, the imperfection-sensitivity of DL cylindrical shells is studied by numerical analysis. Furthermore, a theoretical equation for evaluating the load-bearing capacity of DL cylindrical shells is derived. The results reveal that the average ultimate strength of DL cylindrical shells is approximately 1.85 times higher than that of single-layer(SL) cylindrical shells. DL cylindrical shells are imperfection-sensitivity structures. The imperfection-sensitivity of the DL cylindrical shells is consistent with the imperfection-sensitivity of inner shells. Moreover, the imperfection-sensitivity of DL cylinders decreases with the increase in length-to-diameter ratio. The results of the test, numerical, and theoretical approaches are highly consistent.
2024,46(2): 15-22 收稿日期:2022-12-14
DOI:10.3404/j.issn.1672-7649.2024.02.003
分类号:TU33
基金项目:国家自然科学基金资助项目(52171258)
作者简介:聂露清(1996-),女,硕士研究生,研究方向为双层圆柱壳在轴压下的屈曲行为
参考文献:
[1] MAGNUCKI K, JASION P, RODAK M. Strength and buckling of an untypical dished head of a cylindrical pressure vessel[J]. International Journal of Pressure Vessels and Piping, 2018, 161: 17-21.
[2] MAGNUCKI K, LEWINSKI J, CICHY R. Strength and buckling problems of dished heads of pressure vessels—contemporary look[J]. Journal of Pressure Vessel Technology, 2018, 140(4).
[3] JIAO P, CHEN Z, TANG X, et al. Design of axially loaded isotropic cylindrical shells using multiple perturbation load approach–simulation and validation[J]. Thin-Walled Structures, 2018, 133: 1-16.
[4] NEGRO V, LÓPEZ-GUTIÉRREZ J S, ESTEBAN M D, et al. Monopiles in offshore wind: Preliminary estimate of main dimensions[J]. Ocean Engineering, 2017, 133: 253-261.
[5] JIN, GUANG, TENG. Buckling of thin shells: recent advances and trends[J]. Applied Mechanics Reviews, 1996.
[6] ZHAO C, NIU J, ZHANG Q, et al. Buckling behavior of a thin-walled cylinder shell with the cutout imperfections[J]. Mechanics of Advanced Materials and Structures, 2019, 26(18): 1536-1542.
[7] ULLAH H. Buckling of thin-walled cylindrical shells under axial compression[J]. International Journal for Numerical Methods in Engineering, 2009, 79(11): 1332-1353.
[8] LI Z, PASTERNAK H, JAEGER-CANAS A. Buckling of ring-stiffened cylindrical shell under axial compression: Experiment and numerical simulation[J]. Thin-Walled Structures, 2021, 164: 107888.
[9] FAN H, LI L, GU W, et al. Buckling design of stiffened cylindrical shells under axial compression based on energy barrier approach[J]. Thin-Walled Structures, 2022, 179: 109667.
[10] ZHOU Y, TIAN K, XU S, et al. Two-scale buckling topology optimization for grid-stiffened cylindrical shells[J]. Thin-Walled Structures, 2020, 151: 106725.
[11] PATEL V I, LIANG Q Q, HADI M N S. Numerical analysis of circular double-skin concrete-filled stainless steel tubular short columns under axial loading[C]//Structures, Elsevier, 2020, 24: 754-765.
[12] 焦鹏. 局部轴压下薄壁圆柱壳结构的屈曲行为及设计方法研究[D]. 杭州: 浙江大学, 2021.