纤维增强热塑性复合管(FRTP)由于较小的弯曲刚度、较轻的自身质量和良好的抗腐蚀性能等优点,在海洋工程领域具有广阔的应用前景。本文以FRTP为研究对象,首先通过开展拉-拉单轴疲劳实验得到S-N曲线,并基于剩余刚度理论确定FRTP刚度衰减模型。通过Abaqus有限元软件建立FRTP三维有限元模型,利用Fortran语言编写UMAT子程序模拟其在σmax = 80% σs、65% σs、55% σs、40% σs等4种应力水平疲劳荷载下的疲劳过程。从应变和变形两方面进行疲劳分析,基于刚度衰减模型对60% σs应力水平疲劳荷载下的FRTP疲劳过程进行预测。结果表明管道刚度随着荷载循环周次的增加而逐渐衰减,在疲劳寿命前期,荷载应力水平越高,刚度衰减越快。
Fiber reinforced thermoplastic composite pipe (FRTP) has a broad application prospect in the field of offshore engineering due to its small bending stiffness, light weight and good corrosion resistance. This paper takes FRTP as the research object, obtains S-N curve through tensile uniaxial fatigue test, establishes FRTP three-dimensional finite element model based on ABAQUS finite element software, and uses FORTRAN language to compile UMAT subroutine to simulate its σmax = 80% σs、65% σs、55% σs、40% σs the fatigue process under four kinds of stress level fatigue load, focusing on the fatigue analysis from two aspects of strain and deformation, and finally σ The fatigue process of FRTP under s stress level fatigue load is predicted. The results show that the stiffness of the pipeline decreases gradually with the increase of load cycles. In the early stage of fatigue life, the higher the load stress level, the faster the stiffness decay. The finite element model can effectively simulate the fatigue process of FRTP, predict its fatigue life, and provide an effective basis for engineering practice.
2024,46(2): 23-30 收稿日期:2022-08-23
DOI:10.3404/j.issn.1672-7649.2024.02.004
分类号:TE973
基金项目:国家重点研发项目(2016YFC0303800)
作者简介:张磊(1996-),男,硕士,工程师,研究方向为海洋油气管道结构设计
参考文献:
[1] KAYNAK C, MAT O. Uniaxial fatigue behavior of filament-wound glass-fiber/epoxy composite tubes[J]. Composites Science and Technology, 2001, 61: 1833–1840
[2] JOSEPH E, PERREUX D. Fatigue behaviour of glass-fibre/epoxy-matrix filament-wound pipes: Tension loading test and result[J]. Composite Science and Technology, 1994, 52(4): 469–480
[3] GEMI L, TARAKÇIOĞLU N, AKDEMIR A, et al. Progressive fatigue failure behavior of glass/epoxy (±75°)2 filament-wound pipes under pure internal pressure[J]. Materials and Design, 2009, 30(10): 4293–4298
[4] TARAKÇIOĞLU N, GEMI L, YAPICI A. Fatigue failure behavior of glass/epoxy ±55 filament wound pipes under internal pressure[J]. Composites Science and Technology, 2005, 65(3/4): 703–708
[5] TASYÜREK M, TARAKÇIOĞLU N. Enhanced fatigue behavior under internal pressure of CNT reinforced filament wound cracked pipes[J]. Composites Part B, 2017, 124: 23–30
[6] ELLYIN F, MARTENS M. Biaxial fatigue behavior of a multidirectional filament-wound glass-fiber/epoxy pipe[J]. Composites Science and Technology, 2001, 61(4): 491–502
[7] PERREUX D, JOSEPH E. The effect of frequency on the fatigue performance of filament-wound pipes under biaxial loading: experimental results and damage model[J]. Composites Science and Technology, 1997, 57(3): 353–64
[8] QUARESIMIN M, CARRARO P A. Damage initiation and evolution in glass/epoxy tubes subjected to combined tension-torsion fatigue loading[J]. International Journal of Fatigue 2014, 63: 25-35.
[9] 吴将. 起圈织物增强复合材料细观力学及冲击性能研究[D]. 南京: 南京航空航天大学, 2018.
[10] ISO 13003: 2003. Fiber-reinforced plastics-determination of fatigue properties under cyclic loading conditions[S]. GENEVA: ISO, 2003.
[11] DNVGL-RP-F119. Thermoplastic composite pipes[S]. NORGE:DNVGL, 2015.
[12] YANG J N, LEE L J., SHEN D Y Modulus reduction and fatigue damage of matrix dominated composite laminates[J]. Composite Structures, 1992, 21: 91–100