针对欠驱动自主水下航行器在速度约束和未知外界环境干扰下的轨迹跟踪问题,提出一种基于模型预测控制算法和干扰观测器的复合控制方案。首先,基于模型预测控制算法设计一种考虑速度极限约束以及速度增量约束的轨迹跟踪运动学控制器。其次,针对海洋作业环境下存在的外界干扰,设计干扰观测器对其进行实时估计,并基于所设计的干扰观测器,设计精确跟踪期望速度的动力学控制器,并对控制方案进行了严格的理论分析。最后,进行数值仿真,仿真结果证实了该控制方案的有效性。
Aiming at the problem of trajectory tracking of underactuated autonomous underwater vehicle under speed constraints and unknown external disturbances, a model predictive control and disturbance observer-based compound control scheme is proposed. Firstly, based on the model predictive control algorithm, a trajectory tracking kinematics controller considering speed constraints and speed increment constraints is designed. Besides, For the external disturbance existing in the marine operation environment, a disturbance observer is designed to estimate the environmental disturbance in real time. Based on the results of the disturbance observer, a dynamic controller is designed to track the desired speed accurately, the rigorous theoretical analysis of the control scheme is details. Finally, the numerical simulation of the proposed control scheme is carried out, and the simulation results verify the effectiveness of the proposed control scheme.
2024,46(2): 74-80 收稿日期:2022-11-09
DOI:10.3404/j.issn.1672-7649.2024.02.013
分类号:U664.82
基金项目:国家自然基金资助项目(6140241010103);装发领域基金资助项目(JZX7Y20190252032901)
作者简介:廖宇辰(1998-),男,硕士研究生,研究方向为水下机器人运动控制
参考文献:
[1] ZHANG F, MARANI G, SMITH R N, et al. Future trends in marine robotics[J]. IEEE Robotics & Automation Magazine, 2015, 22(1): 14-122.
[2] XIANG X, JOUVENCEL B, PARODI O. Coordinated formation control of multiple autonomous underwater vehicles for pipeline inspection[J]. International Journal of Advanced Robotic Systems, 2010, 7(1): 75-84.
[3] FERRI G, MUNAFO A, LEPAGE K D. An autonomous underwater vehicle data-driven control strategy for target tracking[J]. IEEE Journal of Oceanic Engineering, 2018, 43(2): 323-343.
[4] ZHANG F, FRATANTONI D M, PALEY D A, et al. Control of coordinated patterns for ocean sampling[J]. International Journal of Control, 2007, 80(7): 1186-1199.
[5] WADI A, MUKHOPADHYAY S, LEE J H. A novel disturbance-robust adaptive trajectory tracking controller for a class of underactuated autonomous underwater vehicles[J]. Ocean Engineering, 2019, 189: 106377.
[6] 高剑, 徐德民, 严卫生, 等. 欠驱动自主水下航行器轨迹跟踪控制[J]. 西北工业大学学报, 2010(3): 404-408.
GAO J, XU D M, YAN W S, et al. Applying cascaded systems theory to ensuring globally uniformly asymptotical stability of trajectory tracking controller of underactuated Autonomous Underwater Vehicle (AUV)[J]. Journal of Northwestern Polytechnical University, 2010(3): 404-408.
[7] 严浙平, 杨泽文, 贾鹤鸣, 等. 时变干扰下欠驱动AUV水平面轨迹跟踪的反步滑模控制[J]. 宇航总体技术, 2017, 4(1): 7.
YAN Z P, YANG Z M, JIA H M, et al. Backstepping sliding mode control of the underactuated auv in horizontal plane trajectory tracking under the time-varying disturbance[J]. Astronautical Systems Engineering Technology, 2017, 4(1): 7.
[8] 武建国, 刘杰, 陈凯. 时变干扰下AUV三维轨迹跟踪反步滑模控制[J]. 舰船科学技术, 2022, 44(7): 82-87.
WU J G, LIU J, CHEN K. Backstepping sliding mode control of AUV three-dimensional trajectories tracking under time-varying interference[J]. Ship Science and Technology, 2022, 44(7): 82-87.
[9] 杜佳璐, 李健. 欠驱动水下机器人三维轨迹跟踪有限时间预设性能控制[J]. 控制理论与应用, 2022, 39(2): 383-392.
DU J L, LI J. Finite-time prescribed performance control for the three-dimension trajectory tracking of underactuated autonomous underwater vehicles[J]. Control Theory & Applications, 2022, 39(2): 383-392.
[10] ELMOKADEM T, ZRIBI M, YOUCEF-TOUMI K. Terminal sliding mode control for the trajectory tracking of underactuated Autonomous Underwater Vehicles[J]. Ocean Engineering, 2017, 129: 613-625.
[11] FOSSEN TI. Handbook of marine craft hydrodynamics and motion control[M]. John Willey&Sons Ltd, 2011, 15-20.
[12] SHEN C, SHI Y. Distributed implementation of nonlinear model predictive control for AUV trajectory tracking[J]. Automatica, 2020, 115: 108863.
[13] 龚建伟, 姜岩, 徐威. 无人驾驶车辆模型预测控制(第2版)[M]. 北京: 北京理工大学出版社, 2020: 84-85.
[14] 李升波, 王建强, 李克强. 软约束线性模型预测控制系统的稳定性方法[J]. 清华大学学报(自然科学版), 2010, 50(11):1848-1852.
LI S B, WANG J Q, LI K Q. Stabilization of linear predictive control systems with softening constraints[J]. Joumal of Tsinghua University (Natural Science Sdition), 2010, 50(11): 1848-1852.
[15] KONG S H, Sun J L, QIU C L, et al. Extended state observer-based controller with model predictive governor for 3-d trajectory tracking of underactuated underwater vehicles[J]. IEEE Transactions on Industrial Informatics, 2020, 17(9): 6114-6124.
[16] YANG H, GUO M, XIA Y, et al. Trajectory tracking for wheeled mobile robots via model predictive control with softening constraints[J]. IET Control Theory & Applications, 2018, 12(2): 206-214.
[17] 华长春, 陈传虎, 陈健楠, 等. 基于干扰观测器的水下机器人预定性能控制[J]. 控制与决策, 2022, 37(5): 1160−1166.
HUA C C, CHEN, C H, CHEN J N, et al. Prescribed performance control of underwater robot based on disturbance observer[J]. Control and Decision, 2022, 37(5): 1160−1166.
[18] CHANG K, XIA Y, HUANG K. Coordinated formation control design with obstacle avoidance in three-dimensional space[J]. Journal of the Franklin Institute, 2015, 352(12): 5779-5795.