X舵欠驱动AUV结构复杂、舵片与本体之间相互作用力增多,对其进行动力学建模变得非常困难。为了克服相互作用力对建模过程的影响,引入凯恩动力学的相关知识,推导出X舵欠驱动AUV的凯恩动力学模型。以广义坐标为基础,推导出力的作用点处的广义速度、偏速度、偏角速度的计算公式,给出了计算广义主动力和广义惯性力的方法,展示了凯恩动力学的建模步骤。通过水平面和垂直面的仿真结果,验证了该建模方法的有效性。该建模方法可以避免相互作用力的计算,清晰地展示出力对动力学模型的贡献。
X-rudder underactuated AUV has complex structure and more interaction force between rudder and body, so it is very difficult to model its dynamics. In order to overcome the influence of the interaction force on the modeling process, the Kane dynamics modelling of the X-rudder underactuated AUV are deduced by introducing the related knowledge of Kane dynamics. Based on the generalized coordinates, the calculation formulas of the generalized velocity, partial velocity and partial angular velocity at the point of action of the force are deduced, the methods for calculating the generalized active force and the generalized inertial force are given, and the modeling steps of Kane dynamics are shown. The effectiveness of the modeling method is verified by the motion simulation of horizontal and vertical planes. The modeling method can avoid the calculation of the interaction force and clearly show the contribution of the force to the dynamic model.
2024,46(2): 81-85 收稿日期:2022-11-28
DOI:10.3404/j.issn.1672-7649.2024.02.014
分类号:TP242.6
基金项目:中国计量大学科研启动基金资助项目(01101/200853)
作者简介:杨柯(1983-),男,博士,讲师,研究方向为水下机器人自主运动
参考文献:
[1] FENANDES V H, OLIVEIRA J C D, RODRIGUES D D, et al. Semi-autonomous identification of free span in underwater pipeline from data acquired with AUV - Case study[J]. Applied Ocean Research, 2021, 115: 1-10.
[2] 张志强, 于瑞航, 崔银锋. AUV水下移动重力测量建模及误差分析[J]. 数字海洋与水下攻防, 2021, 4(1): 1-6.
[3] 徐会希, 姜成林. 基于USV与AUV异构平台协同海洋探测系统研究综述[J]. 中国科学院大学学报, 2021, 38(2): 145-151.
[4] 王亭亭, 张南南, 岳才谦, 等. 基于水声通信的AUV组网与协同导航[J]. 水下无人系统学报, 2021, 4: 400-406.
WANG T T, ZHANG N N, YUE C Q, et al. AUV networking and cooperative navigation based on underwater acoustic communication[J]. Journal of Unmanned Undersea Systems, 2021, 4: 400-406.
[5] 梁庆卫, 张鑫, 闫晓航. 节点运动对多AUV协同系统全网完成度的影响[J]. 水下无人系统学报, 2021, 29(2): 170-175.
[6] CHENG C X, SHA Q X, HE B, et al. Path planning and obstacle avoidance for AUV: A review[J]. Ocean Engineering, 2021, 235: 1-14.
[7] DENG Y J, LIU T, ZHAO D X. Event-triggered output-feedback adaptive tracking control of autonomous underwater vehicles using reinforcement learning[J]. Applied Ocean Research, 2021, 113: 1-8.
[8] 尹欣繁, 车兵辉, 章贵川. 小旋翼无人机建模及航线控制研究[J]. 火力与指挥控制, 2022, 47(2): 140-145.
[9] 王林涛, 王健. 四旋翼无人机特种弹药悬停发射动力学研究[J]. 弹道学报, 2022, 34(1): 38-43.
[10] DO T T, WU V H, LIU Z H. Linearization of dynamic equations for vibration and model analysis of flexible joint manipulators[J]. Mechanism and Machine Theory, 2022, 167: 1-17.
[11] HUANG H, TANG G Y, CHEN H X, et al. Dynamic modeling and vibration suppression for two-link underwater flexible manipulators[J]. IEEE Access, 2022, 10: 40181-40195.
[12] 孙志伟, 李亚洲, 武志华. 基于拉格朗日方程的Delta机器人动力学分析[J]. 机电工程技术, 2020, 49(9): 120-123.
[13] ZHANG Y L, ZHAO G L, LI H X. Multibody dynamic modeling and controlling for unmanned bicycle system[J]. ISA Transaction, 2021, 118: 174-188.
[14] CAI Y F, ZHENG S T, LIU W T, et al. Sliding-model control of ship-mounted Stewart platform for wave compensation using velocity feedforward[J]. Ocean Engineering, 2021, 236: 1-10.
[15] CARUSO M, BREGANT L, GALLINA P, et al. Design and multi-body dynamic analysis of the Archimede space exploration rover[J]. Acta Astronautica, 2022, 194: 229-241.
[16] CAO Y H, NIE W S, WANG Z R, et al. Dynamic modeling of helicopter-slung load system under the flexible sling hypothesis[J]. Aerospace Science and Technology, 2020, 99: 1-8.
[17] CIBICIK A, EGELAND O. Kinematics and dynamics of flexible robotic manipulators using dual screws[J]. IEEE Transactions on Robotics, 2021, 37(1): 206-222.
[18] 张利军, 姜大鹏, 胡忠辉. 水下航行器跟踪控制的非线性理论分析[M]. 北京: 科学出版社, 2019: 39-51.
[19] 夏极, 黄斌. X舵潜艇空间旋回运动控制系统设计[J]. 中国舰船研究, 2020, 15(3): 155-160.