当今水下无人航行器(UUV)在军事与民用领域都有着广泛的应用前景,布放与回收技术是影响UUV实际应用的一项关键技术。目前主要回收引导方式有声学导引、光学导引、电磁导引这3种,而各自都存在明显的优缺点。本文针对声光联合导引机械臂回收系统光学子系统进行研究,设计一组可在水下200 m、0.05~10?m范围工作的机器视觉镜头及其配合使用的靶标,并完成了系统的仿真。该系统可在环境要求下准确地提取出靶标特征点。
Unmanned underwater vehicle (UUV) enjoys a wide prospect in both military and civilian application. The deployment and retracting technology are essential when affecting the practical application of UUV. At present, there are three main retracting guidance methods: acoustic guidance, optical guidance, and electromagnetic guidance. Each has obvious pros and cons. This paper studies the design process of the optical sub-system in the robotic arm retracting system guided by the acoustic-optical composite method, and a machine vision lens that can be submerged 200 meters. The working distance is in the range of 0.05 ~10 m and a set of matching used the target were designed. Then the simulation of the system is completed. The system is advanced with the accurate extraction of the target’s feature points under the environmental requirements.
2024,46(2): 86-90 收稿日期:2023-01-09
DOI:10.3404/j.issn.1672-7649.2024.02.015
分类号:U666.11; O439
作者简介:李瑞康(1994-),男,硕士,研究方向为水下光学系统
参考文献:
[1] 刘大庆, 赵云飞, 吴超, 等. 美军水下无人作战力量发展趋势及启示[J]. 数字海洋与水下攻防, 2021, 4(4): 257-263.
[2] 苏翔. 基于机器视觉的海洋无人系统对接回收技术研究[D]. 武汉: 华中科技大学, 2021.
[3] 孙叶义, 武皓微, 李晔, 等. 智能无人水下航行器水下回收对接技术综述[J]. 哈尔滨工程大学学报, 2019, 40(1): 1-11.
[4] 白桂强, 谷海涛, 王子庆, 等. AUV自主回收捕获机构设计与分析[J]. 舰船科学技术, 2020, 42(23): 52-57.
[5] JIN-YEONG PARK, BONG-HUAN JUN, PAN-MOOK LEE, et al. Experiments on vision guided docking of an autonomous underwater vehicle using one camera[J]. Ocean Engineering, 2009, 36: 48-61.
[6] 曹和云, 倪先胜, 何利勇, 等. 国外潜载UUV布放与回收技术研究综述[J]. 中国造船, 2014, 55(2): 200-208.
[7] 燕奎臣, 吴利红. AUV水下对接关键技术研究[J]. 机器人, 2007(3): 267-273.
[8] ZENG Z, ZHANG H, DONG Y, et al. A survey of underwater wireless optical communication[J]. IEEE Communications Surveys & Tutorials, 2015: 1-1.
[9] 国家海洋局. 2017年中国海洋生态环境状况公报[EB/OL]. (2018-06-25)[2022-12-21].
[10] 全国海洋标准化技术委员会. GB/T 36896.4-2018[S]. 北京: 中国标准出版社.
[11] 许尧. 几种特殊光学系统的设计及其有限元分析[D]. 北京: 北京理工大学, 2015.
[12] 姜洋, 全向前, 杜杰, 等. 全海深大视场超高清光学系统设计[J]. 光学精密工程, 2019, 27(11): 2289-2295.
[13] HERBERT Gross, HANNFRIED Zügge, MARTIN Peschka, et al. Handbook of optical systems vol. 3 aberration theory and correction of optical systems[M]. John Wiley & Sons, 2012.
[14] 刘美, 薛新松, 刘广文, 等. 对比度增强的彩色图像灰度化算法[J]. 长春理工大学学报(自然科学版), 2018, 41(5): 70-74.