在海洋结构物疲劳评估时,频域谱分析法将交变应力峰值分布简单认为是窄带分布,不符合宽带海况特征,疲劳结果往往偏保守。全时域法虽然计算精度高,但整个过程过于耗时,很难应用在实际工程中。本文考虑到时域法和频域法在疲劳评估时各自的缺陷,给出一种时域-频域混合法,运用此方法对某半潜式海洋平台关键节点进行疲劳计算,并分析不同因素对疲劳损伤的影响。结果表明,不同浪向角和短期海况对半潜式海洋平台的疲劳损伤贡献度不同,贡献度大小与评估区域位置有关。所得结论为半潜式海洋平台的疲劳评估提供一定依据和参考。
In the fatigue assessment of marine structures, the frequency domain spectral method simply considers the peak distribution of alternating stresses as narrow-band distribution, which does not conform to the characteristics of broadband sea state, and the fatigue results are often conservative. Although the full time domain method has high calculation accuracy, the whole process is too time-consuming and difficult to be applied in practical engineering. The paper gives a hybrid time-frequency domain method considering the defects of the time domain method and frequency domain method in fatigue assessment. This method is used to calculate the fatigue damage of hotspots of a semi-submersible offshore platform and to analyze the effects of different factors on fatigue damage. The results show that: different wave angles and short-term sea states contribute differently to the fatigue damage of semi-submersible offshore platforms, and the magnitude of the contribution is related to the location of the evaluation area. The conclusions obtained provide a certain basis and reference for the fatigue assessment of semi-submersible platforms.
2024,46(2): 96-100 收稿日期:2022-11-23
DOI:10.3404/j.issn.1672-7649.2024.02.017
分类号:U661.4
基金项目:江苏省高等学校自然科学研究项目(21KJD580003);南通市基础研究计划项目(JCZ21113);南通市社会民生计划项目(MSZ2022161)
作者简介:高洁(1983-),女,博士,副教授,研究方向为海洋平台结构。
参考文献:
[1] 王金峰, 王永刚, 周庆, 等. 半潜式平台关键连接结构节点形式对疲劳强度的影响[J]. 中国海洋平台, 2021, 36(5): 1-7.
[2] LI Z, MAO W, RINGSBERG J W, et al. A comparative study of fatigue assessments of container ship structures using various direct calculation approaches[J]. Ocean Engineering, 2014, 82: 65-74.
[3] XU K, ZHANG M, SHAO Y, et al. Effect of wave nonlinearity on fatigue damage and extreme responses of a semi-submersible floating wind turbine[J]. Applied Ocean Research, 2019, 91: 10189.
[4] 盛振国, 任慧龙, 甄春博, 等. 基于时域载荷的海上风机基础结构疲劳分析[J]. 华中科技大学学报(自然科学版), 2014, 42(4): 96-100.
[5] 谢文会, 谢彬, 赵晶瑞, 等. 半潜式平台结构疲劳特征研究[J]. 舰船科学技术, 2020, 42(7): 131-135.
[6] DU Junfeng, LI Huajun, ZHANG Min, et al. A novel hybrid frequency-time domain method for the fatigue damage assessment of offshore structures[J]. Ocean Engineering, 2015, 98.
[7] 周陈炎, 张佳宁, 申亚洲, 等. 宽带随机载荷下船舶结构的两种疲劳直接计算方法[J]. 大连海事大学学报, 2018, 44(1): 41−47.
[8] 胡毓仁, 陈伯真. 船舶与海洋工程结构疲劳可靠性[M]. 北京: 人民交通出版社, 1996.
[9] 中国船级社. 海洋工程结构物疲劳强度评估技术指南[S]. 北京: 人民交通出版社, 2022.
[10] GAO Xifeng, LIU Xiaoyong, XUE Xutian, et al. Fracture mechanics-based mooring system fatigue analysis for a spar-based floating offshore wind turbine[J]. Ocean Engineering, 2021, 108618.
[11] 彭丽华. 考虑雨流计数的频域疲劳计算方法[D]. 武汉: 武汉理工大学, 2018.
[12] HSE. Offshore technology report[R]. UK: BOMEL Ltd. , 2001.