开展船舶主机不同负荷工况下的S-CO2布雷顿循环余热系统热力学特性和效能分析是其实现工程应用的必要环节。本文通过性能分析确定系统热力学参数对净输出功率和平准化能源成本的影响变化趋势,最佳运行参数范围以及系统关键热力学参数。通过主机典型负荷工况下的效能评估,分析集成S-CO2再压缩布雷顿循环余热发电系统后的船舶节能减排效益。结果表明:主压缩机入口压力和压比对整个余热发电系统热力学性能和经济性影响最为显著,可调节这2个关键热力学参数以确保系统在船舶主机不同负荷下获得良好系统性能;集成该余热发电系统后,MAN8S90ME-C10.2型主机系统热效率最高可提高0.91%,燃油消耗量平均每年可减少51 t,NO2和CO2的排放量每年可分别减少2.28 t和760 t。
Analyzing the system performances of the S-CO2 Brayton cycle waste heat recovery power generation system is an important part of realizing the engineering applications. In this study, the effects of thermodynamic parameters on the net power output and levelized cost of energy under different ship main engine load conditions can be obtained through thermodynamic analysis. Then, the Spearman rank correlation is deployed to assess the impact level of the thermodynamic parameters on the net power output and levelized cost of energy. At last, the part-load performance study is carried out to evaluate the benefit from the S-CO2 recompression Brayton cycle waste heat recovery system. The results show that the main compressor inlet pressure and the system pressure ratio affect the system performance the most. Thus, it can adjust the two parameters to ensure the S-CO2 recompression Brayton cycle have a better performance under different ship main engine load conditions. In addition, the maximum equivalent thermal efficiency of the ship main engine MAN 8S90ME-C10.2 increase 0.91%. Correspondingly, the yearly average ship fuel consumption can be reduced about 51 tons. The emissions reductions of NO2 and CO2 can be lowered by 2.28 tons and 760 tons per year, respectively.
2024,46(2): 113-121 收稿日期:2022-11-29
DOI:10.3404/j.issn.1672-7649.2024.02.020
分类号:U664.12
基金项目:宜昌市自然科学基金资助项目(A22-3-008)
作者简介:潘鹏程(1990-),男,博士,讲师,研究方向为S-CO2布雷顿循环余热发电技术
参考文献:
[1] POULSEN RT, JOHNSON H. The logic business vs. the logic of energy management practice: understanding the choices and effects of energy consumption monitoring systems in shipping companies[J]. Journal of Cleaner Production, 2016, 112(5): 3785-3797.
[2] SENARY K, TAWFIK A, HEGAZY E, et al. Development of a waste heat recovery system onboard lng carrier to meet imo regulations[J]. Alexandria Engineering Journal, 2016, 55(3): 1951-1960.
[3] Singh DV, Pedersen E. A review of waste heat recovery technologies for maritime applications[J]. Energy Conversion and Management, 2016, 111: 315-328.
[4] 袁成清, 潘鹏程, 孙玉伟, 等. 基于集成高效热能发电系统的船舶Attained EEDI及燃油消耗量分析[J]. 中国造船, 2018, 59(1): 197-206.
Yuan Chengqing, Pan Pengcheng, Sun Yuwei, et al. Attained EEDI and fuel consumption of ships with integrated with high-efficiency heat power generation systems[J]. Shipbuilding of China, 2018, 59(1): 197-206.
[5] 梁敦煌, 张尧立, 赵英汝, 等. 压力对超临界二氧化碳布雷顿循环系统的影响[J]. 哈尔滨工业大学学报, 2017, 38(4): 578-82.
Liang Dunhuang, Zhang Yaoli, Zhao Yingru, et al. Influence of pressure on the thermal performance of the S-CO2 brayton cycle[J]. Journal of Harbin Engineering University, 2017, 38(4): 578-82.
[6] FEHER EG. The supercritical thermodynamic power cycle[J]. Energy Conversion, 1968, 8(2): 85-90.
[7] ANGELINO G. Carbon dioxide condensation cycles for power production[J]. Journal of Engineering for Power, 1968, 90(3): 287-295.
[8] DOSTAL V. A supercritical carbon cycle for next generation nuclear reactors[J]. Massachusetts Institute of Technology, 2004, 154(3): 265-282.
[9] HUANG YP, WANG JF. Applications of supercritical carbon dioxide in nuclear reactor system[J]. Nuclear Power Engineering, 2012, 33(3): 21-27.
[10] Osorio JD, Hovsapian R, Ordonez JC. Dynamic Analysis of Concentrated Solar Supercritical CO2-based Power Generation Closed-loop Cycle[J]. Applied Thermal Engineering, 2016, 93: 920-934.
[11] 吴毅, 王佳莹, 王明坤, 等. 基于超临界CO2布雷顿循环的塔式太阳能集热发电系统[J]. 西安交通大学学报, 2016, 50(5): 108-13.
Wu Yi, Wang Jiaying, Wang Mingkun, et al. A towered solar thermal power plant based on supercritical CO2 Brayton Cycle[J]. Journal of Xi'an Jiaotong University, 2016, 50(5): 108-13.
[12] 裘闰超. 基于超临界CO2布雷顿循环的塔式太阳能光热系统模拟研究 [D]. 杭州: 浙江大学, 2018.
[13] MECHERI M, MOULLEC YL. Supercritical CO2 brayton cycles for coal-fired power plants[J]. Energy, 2016, 103: 758-771.
[14] HOU SY, WU YD, ZHOU YD, et al. Performance analysis of the combined supercritical CO2 recompression and regenerative cycle used in waste heat recovery of marine gas turbine[J]. Energy Conversion and Management, 2017, 151: 73-85.
[15] DYREBY JJ, KLEIN SA, NELLIS G, et al. Design considerations for supercritical carbon dioxide brayton cycles with recompression[J]. Journal of Engineering for Gas Turbines and Power, 2014, 136(10): 101701.
[16] SHARMA OP, KAUSHIK SC, MANJUNATH K. Thermodynamic analysis and optimization of a supercritical CO2 regenerative recompression brayton cycle coupled with a marine gas turbine for shipboard waste heat recovery. Thermal Science and Engineering Progress, 2017, 3: 62-74.
[17] Choi BC. Thermodynamic Analysis of a Transcritical CO2 Heat Recovery System with 2-stage Reheat Applied to Cooling Water of Internal Combustion Engine for Propulsion of the 6800TEU Container Ship. Energy, 2016, 107: 532-541.
[18] 赵庆, 陶志强, 唐豪杰, 等. 超临界二氧化碳循环系统工艺参数设计研究[J]. 中国机工程学报, 2020, 40(11): 3557-3565.
Zhao Qing, Tao Zhiqiang, Tang Haojie, et al. Process parameter design study for supercritical carbon dioxide cycle system[J]. Proceedings of the CSEE, 2020, 40(11): 3557-3565.
[19] PAN PC, YUAN CQ, SUN YW, et al. Thermo-economic Analysis and Multi-objective Optimization of S-CO2 Brayton cycle waste heat recovery system for an ocean-going 9000TEU container ship[J]. Energy Conversion and Management, 2020, 221: 113077.
[20] 黄雯旭. 超临界二氧化碳再压缩布雷顿循环参数分析 [D]. 合肥: 中国科技大学, 2018.
[21] KULHANEK M, DOSTAL V. Supercritical carbon dioxide cycles thermodynamic analysis and comparison [C]. In Supercritical CO2 Power Cycle Symposium, Boulder, USA, 2011.
[22] BHATTACHARYYA S. Optimization of recompression S-CO2 power cycle with reheating[J]. Energy, 2009, 50(8): 1939-1945.
[23] AKBARI AD, MAHMOUDI SMS. Thermoeconomic analysis optimization of the combined supercritical CO2 (carbon dioxide) recompression brayton/organic rankine cycle[J]. Energy, 2014, 78: 501-512.
[24] CAO Y, REN JQ, SANG YQ, et al. Thermodynamic analysis and optimization of a gas turbine and cascade CO2 combined cycle[J]. Energy Conversion and Management, 2017, 144: 193-204.
[25] DYREBY JJ. Modeling the supercritical carbon dioxide brayton cycle with recompression [D]. The University of Wisconsin-Madison, 2014.
[26] MANENTE G, FORTUNA FM. Supercritical CO2 power cycles for waste heat recovery: a systematic comparison between traditional and novel layouts with dual expansion[J]. Energy Conversion and Management, 2019, 197: 111777.
[27] SUN EH, XU JL, LI MJ, et al. Connected-top-bottom-cycle to cascade utilize flue gas heat for supercritical carbon dioxide coal fired power plant[J]. Energy Conversion and Management, 2018, 172: 138-154.