为了研究冲击波和破片联合作用下船舶舱段的毁伤效应,首先在ANSA中建立舱段的有限元模型,设定材料模型、模拟舷侧破口、建立战斗部模型和耦合模型;之后在AUTODYN中对比分析了爆炸冲击波单独作用以及冲击波、破片联合作用2种情形下,船舶舱段的舱内爆炸载荷特性、舱室结构等效塑性应变及位移等数值结果的差异。结果表明:考虑冲击波和破片的联合作用时,冲击波压力曲线的前期趋势与冲击波单独作用下大致相同,但由于冲击波从破口发生泄漏,舱室内压力会较早达到准静态压力状态。同时,爆炸当舱的更多区域出现了大破口,毁伤主要表现为角隅大塑性变形以及边缘大面积撕裂,甲板和舷侧的最大位移和等效塑性应变也较冲击波单独作用大得多。
In order to study the damage effect of the ship cabin under the combined action of shock waves and fragments, the finite element model of the cabin was first established in the software ANSA, and the material model, side breach simulation, warhead model and coupling model were set reasonably. Then, in the software AUTODYN, the differences in the numerical results of the explosion load characteristics in the cabin, the equivalent plastic strain and displacement of the cabin structure under the two conditions of the explosion shock wave alone and the combined action of the shock wave and the fragments were compared and analyzed. The results show that when considering the combined action of shock wave and fragments, the early trend of the shock wave pressure curve is roughly the same as that of the shock wave alone, but due to the shock wave leaking from the breach, the pressure in the cabin will reach the quasi-static pressure state earlier. At the same time, large cracks appeared in more areas of the cabin during the explosion, and the damage is mainly manifested as large plastic deformation of the corners and large-area tearing of the edges. The maximum displacement and equivalent plastic strain of the deck and side are also much larger than those of the shock wave alone.
2024,46(3): 19-27 收稿日期:2022-10-15
DOI:10.3404/j.issn.1672-7649.2024.03.004
分类号:U661.43
作者简介:万文超(1996-),男,硕士,工程师,研究方向为舰船结构设计
参考文献:
[1] MOTT N F. Fragmentation of shell cases[J]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1947, 189(1018): 300–308.
[2] COHEN JR E A. New formulas for predicting the size distribution of warhead fragments[J]. Mathematical Modelling, 1981, 2(1):19–32.
[3] TAYLOR G. The formation of a blast wave by a very intense explosion. II. The atomic explosion of 1945[J]. Proceedings of the Royal Society of London Series A, 1950, 201(1065): 175–186
[4] BACH G G, LEE J H S. An analytical solution for blast waves[J]. AIAA Journal, 1970, 8(2): 271–275
[5] HENRYCH J. The dynamic of explosion and its use[M]. Amsterdam: Elsevier, 1979.
[6] BRODE H L. Numerical solutions of spherical blast waves[J]. Journal of Applied Physics, 1955, 26(6): 766–775
[7] 张玉磊, 苏健军, 李芝绒. TNT内爆炸准静态压力特性[J]. 爆炸与冲击, 2018, 38(6): 252–257
[8] 李营, 任广为, 张玮, 等. 水介质对舱内爆炸抑制作用的实验研究[J]. 爆炸与冲击, 2017, 37(6): 1–7
[9] 刘敬喜, 刘尧, 汤皓泉, 等. 爆炸载荷作用下单向加筋方板的大挠度塑性动力响应分析[J]. 振动与冲击, 2011, 30(4): 182–187
[10] CHUNG KIM YUEN S, NURICK G N. Experimental and numerical studies on the response of quadrangular stiffened plates. Part I: subjected to uniform blast load[J]. International Journal of Impact Engineering, 2005, 31(1): 55–83
[11] KADID A. Stiffened plates subjected to uniform blast loading[J]. Journal of Civil Engineering and Management, 2008, 14(3): 155–161
[12] 刘土光, 胡要武, 郑际嘉. 固支加筋方板在爆炸载荷作用下的刚塑性动力响应分析[J]. 爆炸与冲击, 1994, 14(1): 55–65
[13] 黄震球. 固支加筋方板的大挠度塑性动力响应[J]. 固体力学学报, 1995, 16(1): 5–12
[14] 梅志远, 朱锡, 刘润泉. 船用加筋板架爆炸载荷下动态响应数值分析[J]. 爆炸与冲击, 2004, 24(1): 80–84
[15] 曹广博. 空中爆炸载荷作用下船体结构动态响应及剩余强度研究[D]. 镇江: 江苏科技大学, 2019.
[16] 孔祥韶. 爆炸载荷及复合多层防护结构响应特性研究[D]. 武汉: 武汉理工大学, 2013: 137-154.
[17] DUNNETT J, FLYNN D, WHARTON J. Blast algorithm development: definition of modified blast algorithms for PBX based explosives[C]//Insensitive Munitions and Energetic Materials Technical Symposium IMEMTS, 2006.