以圆球状浮体为对象,研究尺度、密度比(圆球密度与流体密度比值)对其上浮运动性能的影响。建立静水中圆球上浮运动数值模拟方法,通过与模型试验测试结果对比,验证数值方法的可靠性。通过验证的计算方法对不同尺度和密度比的圆球上浮运动过程进行分析,结果表明:圆球在稳定上浮阶段的阻力系数大致为常数1,不随圆球尺度和密度比变化产生较大变化;若2个圆球满足相似条件且尺度之比为λ,则它们的稳定速度之比和上浮总时间之比大致为λ0.5。本研究通过对圆球上浮运动的计算和分析,寻求不同尺度圆球上浮运动之间的相关性,可为其他结构物上浮运动性能的尺度相关性研究分析提供参考依据。
Taking the spherical floating body as the research object, the influence of scale and density ratio on its floating motion performance was studied. Numerical simulation method for the floating motion of a ball in hydrostatic water was established, and the reliability of the numerical method was verified by comparing the test results through model tests. Then, the floating motion of multiple spheres of different scales was simulated and analyzed. It is found that the drag coefficient of the sphere in the stable floating stage is roughly constant 1, which does not change greatly with the change of Reynolds number. If two spheres meet similar conditions and the ratio of scales is λ, the ratio of their stable velocities to the total time to float is approximately λ0.5. In this study, through the calculation and research analysis of the floating motion of the sphere, the correlation between the floating motion of the sphere of different scales is sought, which can provide an important reference for the study and analysis of the scale correlation of the floating motion performance of other structures.
2024,46(3): 28-33 收稿日期:2023-02-01
DOI:10.3404/j.issn.1672-7649.2024.03.005
分类号:U665
基金项目:国家自然科学基金面上项目(12072126)
作者简介:梁来雨(1986-),男,硕士,高级工程师,研究方向为水下救生与特种作业
参考文献:
[1] 孟晓宇, 田琬. 国外援潜救生装备系统发展现状[J]. 舰船科学技术, 2012, 34(10): 137-143.
MENG X Y, TIAN W. Development status of foreign submarine rescue equipment system[J]. Ship Science and Technology, 2012, 34(10): 137-143.
[2] 王世明, 吴爱平, 马利娜. 剖面探测浮标上浮运动研究[J]. 船舶工程, 2010, 32(6): 57-59+81.
WANG S M, WU A P, M L. Study on the floating motion of profile detection buoy[J]. Naval Engineering, 2010, 32(6): 57-59+81.
[3] 孙斌, 黄祥兵. 潜艇大型集体逃生舱上浮速度控制仿真计算[J]. 中国舰船研究, 2020, 15(S1): 42-49+60.
SUN B, HUANG X B. Simulation calculation of floating speed control of large collective escape pod of submarine[J]. Chinese Journal of Ship Research, 2020, 15(S1): 42-49+60.
[4] 黄祥兵, 黄兴玲, 董云飞. 潜艇集体逃生舱上浮水动力性能[J]. 海军工程大学学报, 2013, 25(3): 78-81.
HUANG X B, HUANG X L, DONG Y F. Dynamic performance of floating water on the collective escape compartment of submarine[J]. Journal of Naval University of Engineering, 2013, 25(3): 78-81.
[5] 黄祥兵, 董云飞, 黄兴玲. 减速翼对潜艇集体逃生舱最大上浮速度的影响研究[C]//中国国际船艇展暨高性能船学术报告会,中国造船工程学会,上海船舶工业行业协会,中国船舶工业行业协会, 上海, 中国, 2013: 1-5.
HUANG X B, DONG Y F, HUANG X L. Study on the influence of deceleration wing on the maximum floating speed of the collective escape pod of submarine[C]//China International Boat Show & High Performance Ship Academic Presentation, China Shipbuilding Engineering Society, Shanghai Shipbuilding Industry Association, China Shipbuilding Industry Association, Shanghai, China, 2013: 1-5.
[6] 唐鑫, 黄祥兵, 黄兴玲. 多尺度的潜艇集体逃生舱运动过程数值模拟[J]. 中国舰船研究, 2014, 9(4): 25-29.
TANG X, HUANG X B, HUANG X L. Numerical simulation of the motion process of the collective escape capsule of submarines at multiple scales[J]. Chinese Journal of Ship Research, 2014, 9(4): 25-29.
[7] 廖欢欢. 潜体应急上浮过程的水动力分析[D]. 哈尔滨: 哈尔滨工程大学, 2016.
[8] 李昆鹏, 魏成柱, 梁晓锋. 多面体网格在滑行艇数值仿真计算中的应用[J]. 舰船科学技术, 2020, 42(3): 33-37.
LI K P, WEI C Z, LIANG X F. Application of polyhedral mesh in numerical simulation calculation of taxiing boat[J]. Ship Science and Technology, 2020, 42(3): 33-37.
[9] 宋磊, 任再美, 陈林, 等. 一种船用推扭传感器设计及研究[J]. 舰船科学技术, 2020, 42(13): 82-85.
SONG L, REN Z M, CHEN L, et al. Design and research of a kind of marine push-torsion sensor[J]. Ship Science and Technology, 2020, 42(13): 82-85.
[10] 高勇, 裴金亮, 鲍文春. 一种考虑尾空泡影响的航行体流体动力数值仿真计算模型[J]. 船舶力学, 2018, 22(1): 31-37.
GAO Y, PEI J l, BAO W c. A numerical simulation model of hydrodynamic forces considering the influence of tail cavitation[J]. Ship Mechanics, 2018, 22(1): 31-37.
[11] 覃梓真, 吴必军, 张芙铭. 不等截面串联双管浮体模型波浪能量转换特性研究[J]. 太阳能学报, 2022, 43(12): 476-481.
QIN Z Z, WU B J, ZHANG F M. Study on wave energy conversion characteristics of unequal section tandem double-tube floating model[J]. Journal of Solar Energy, 2022, 43(12): 476-481.
[12] ZHANG L, KONG B, LIN S Y, et al. . Research on the vibration-absorptive design of the independent escape capsule[J]. Ocean Engineering, 2021, 219: 108296.