基于改进的延迟分离涡模型对后置定子泵喷推进器瞬态流场进行数值模拟,所得推力计算值与试验值最大误差为4.68%,验证数值模拟的可靠性。分析泵喷推进器近流场压力脉动时频域特性,研究多工况下后置定子表面压力系数、声压脉动时均值的分布规律。结果表明,泵喷推进器内压力脉动主要受转子影响,脉动周期与转子旋转周期一致,频域峰值出现在低频段且均为转子叶片通过频率的整数倍;后置定子平衡转子扭矩的做功区集中在定子前缘,并沿弦向贡献逐渐降低,尾缘约1.8%定子弦长位置对平衡扭矩近乎无贡献;前缘是定子噪声的主要贡献源,在高进速系数下,尾缘表现为定子噪声的次要贡献源,随着进速系数的降低,尾缘对定子噪声贡献逐渐降低。
Based on the improved delayed separation vortex model, the numerical simulation of the transient flow field of the post-stator pumpjet propulsor was carried out, and the maximum error between the calculated thrust value and the experimental value was 4.68%, which verified the reliability of the numerical simulation.The time-frequency domain characteristics of the pressure fluctuation near the flow field of the pumpjet propulsor are analyzed, and the distribution laws of the surface pressure coefficient and the time-average value of the sound pressure fluctuation of the rear stator under multiple working conditions are studied.The results show that the pressure pulsation in the pumpjet propulsor is mainly affected by the rotor, the pulsation period is consistent with the rotor rotation period, and the peak value in the frequency domain appears in the low frequency band and is an integer multiple of the passing frequency of the rotor blades; the rear stator balances the work area of the rotor torque It is concentrated at the leading edge of the stator, and its contribution gradually decreases along the chord direction.The position of about 1.8% of the stator chord length at the trailing edge has almost no contribution to the balance torque; the leading edge is the main contributor to the stator noise.As the secondary contribution source of the stator noise, the contribution of the trailing edge to the stator noise gradually decreases with the decrease of the advance speed coefficient.
2024,46(3): 62-68 收稿日期:2023-02-13
DOI:10.3404/j.issn.1672-7649.2024.03.011
分类号:U664.34
基金项目:国家重点研发计划资助项目(2020YFC1521704);天津市科技计划资助项目(22YDTPJC00470)
作者简介:杜通成(1997-),男,硕士研究生,研究方向为泵喷推进器性能分析与声振控制
参考文献:
[1] 付建, 宋振海, 王永生, 等. 泵喷推进器水动力噪声的数值预报[J]. 船舶力学, 2016, 20(5): 613-619.
FU J, SONG Z H, WANG Y S, et al. Numerical predicting of hydroacoustics of pumpjet propulsor[J]. Ship Mechanics, 2016, 20(5): 613-619.
[2] JI X Q, DONG X Q, YANG C J. Attenuation of the tip-clearance flow in a pump-jet propulsor by thickening and raking the tips of rotor blades: a numerical study[J]. Applied Ocean Research, 2021, 113: 102723.
[3] 鹿麟. 泵喷推进器设计与流场特性研究[D]. 西安: 西北工业大学, 2016.
[4] SUN Y, LIU W, LI T. Numerical investigation on noise reduction mechanism of serrated trailing edge installed on a pump-jet duct[J]. Ocean Engineering, 2019, 191: 106489.
[5] QIN D, PAN G, LEE S, et al. Underwater radiated noise reduction technology using sawtooth duct for pumpjet propulsor[J]. Ocean Engineering, 2019, 188: 106228.
[6] 潘光, 胡斌, 王鹏, 等. 泵喷推进器定常水动力性能数值模拟[J]. 上海交通大学学报, 2013, 47(6): 932-937.
PAN G, HU B, WANG P, et al. Numerical simulation of steady hydrodynamic of performance of a pump-jet propulsor[J]. Journal of Shanghai Jiaotong University, 2013, 47(6): 932-937.
[7] 常书平, 王永生, 魏应三, 等. 喷水推进器内非定常压力脉动特性[J]. 江苏大学学报(自然科学版), 2012, 33(5): 522-527.
CHANG SP, WANG Y S, WEI Y S, et al. Pressure fluctation of unsteady flow in waterjet[J]. Journal of Jiangsu University (Natural Science Edition), 2012, 33(5): 522-527.
[8] 张明宇, 王永生, 靳栓宝, 等. 喷水推进泵压力脉动特性数值计算及分析[J]. 西安交通大学学报, 2014, 48(11): 51-57+102.
ZHANG M Y, WANG Y S, JIN S B, et al. Numerical analysis for pressure fluctation of waterjet pump[J]. Journal of Xi’an Jiaotong University, 204, 48(11): 51-57+102.
[9] SHI L, YUAN Y, JIAO H, et al. Numerical investigation and experiment on pressure pulsation characteristics in a full tubular pump[J]. Renewable Energy, 2021, 163: 987-1000.
[10] LIU Y, TAN L. Tip clearance on pressure fluctuation intensity and vortex characteristic of a mixed flow pump as turbine at pump mode[J]. Renewable Energy, 2018, 129: 606-615.
[11] YANG F, LI Z, YUAN Y, et al. Study on vortex flow and pressure fluctuation in dustpan-shaped conduit of a low head axial-flow pump as turbine[J]. Renewable Energy, 2022, 196: 856-869.
[12] 高丽敏, 李瑞宇, 赵磊, 等. 分离涡模拟类方法发展及在叶轮机械内流场的应用[J]. 南京航空航天大学学报, 2017, 49(3): 301-312.
GAO L M, LI R Y, ZHAO L, et al. Review of development of DES and its application in turbomachineryr[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2017, 49(3): 301-312.
[13] GRITSKEVICH M S, GARBARUK A V, SCHÜTZE J, et al. Development of DDES and IDDES formulations for the k-ω shear stress transport model[J]. Flow Turbulence and Combustion, 2012, 88(3): 431-449.
[14] YU H, DUAN N, HUA H, et al. Propulsion performance and unsteady forces of a pump-jet propulsor with different pre-swirl stator parameters[J]. Applied Ocean Research, 2020, 100: 102184.