为了确立水动力噪声量化计算规程,对基于FW-H方程的声类比计算方法进行系统性研究。采用螺旋桨水动力性能EFD及CFD标模DTMB 4119螺旋桨为研究对象,基于大涡模拟方法系统探讨了声类比计算收敛性相关问题,包括声学计算时间的影响分析、单个叶片声压与叶片总声压的关系、声压与流动压力比较等。研究表明,声学计算时间的长短对频率谱的分布有影响,但平均声压级几乎不受影响,误差不到1%;单个叶片的SPL几乎相等但声压存在相位差,总体SPL相比单个叶片有所降低;螺旋桨远场声压一般低于流动压力,近场螺旋桨域内则例外,呈现不收敛趋势。由此可见,将流动与声传播解耦的声类比方法对于近场声压求解有一定局限性。
In order to establish the quantitative calculation procedure of hydrodynamic noise, the acoustic analogy calculation method based on FW-H equation was studied in detail. Adopting the standard model propeller of hydrodynamic performance in EFD and CFD, DTMB 4119, as the research object, based on the large eddy simulation method, the problems related to the convergence of the acoustic analogy calculation were systematically discussed, including the analysis of the impact of acoustic computation time on the sound field points, the relationship between the sound pressure of a single blade and the total sound pressure of the blades, the comparison between the sound pressure and the flow pressure, etc. It's shown that the acoustic computation time has an effect on the frequency spectrum, but the overall sound pressure level is almost unaffected, with an error of less than 1%. SPL of each blade is almost the same, but there is phase difference in sound pressure. The overall SPL is lower than that of single blade. The far-field sound pressure of propeller is generally lower than the flow pressure, except in the near-field propeller region, which shows a non convergence trend. It can be seen that the acoustic analogy method that decouples the flow and sound propagation has certain limitations for solving near-field sound pressure.
2024,46(3): 69-74 收稿日期:2023-02-16
DOI:10.3404/j.issn.1672-7649.2024.03.012
分类号:U661.1
作者简介:朱天赐(1998-),男,硕士研究生,研究方向为船舶流体力学
参考文献:
[1] 龚京风, 张文平, 明平剑, 等. 螺旋桨低频流噪声模拟方法研究[J]. 中国舰船研究, 2012, 7(5): 14-21.
GONG J F, ZHANG W P, MING P J, et al. Numerical analysis of the propeller low frequency flow-noise[J]. Chinese Journal of Ship Research, 2012, 7(5): 14-21.
[2] 詹志文, 张凌新, 邓见, 等. DTMB 4119螺旋桨噪声特性的数值模拟[J]. 浙江大学学报(工学版), 2021, 55(4): 767-774.
ZHAN Z W, ZHANG L X, DENG J, et al. Numerical simulation of acoustic characteristics on DTMB 4119 propeller[J]. Journal of Zhejiang University (Engineering Science), 2021, 55(4): 767-774.
[3] 孙瑜. 舰艇推进器若干降噪措施及其效果研究[D]. 哈尔滨: 哈尔滨工程大学, 2017.
[4] 于汉. 水面舰船水动力噪声计算方法研究[D]. 上海: 上海交通大学, 2018.
[5] 张卿冕. 某水下航行器水动力噪声数值分析与研究[D]. 昆明: 昆明理工大学, 2021.
[6] 孟堃宇. 基于大涡模拟的潜艇脉动压力与流噪声性能数值计算[D]. 上海: 上海交通大学, 2011.
[7] 张楠, 李亚, 黄苗苗, 等. 艇桨耦合状态螺旋桨水动力与噪声数值预报方法研究[J]. 船舶力学, 2021, 25(11): 1439-1451.
ZHANG N, LI Y, HUANG M M, et al. Numerical prediction approach for hydrodynamic force and noise of propeller in submarine propeller interaction condition[J]. Journal of Ship Mechanics, 2021, 25(11): 1439-1451.
[8] 谌月姣. 基于CFD的导管串列螺旋桨敞水性能研究[D]. 湘潭: 湘潭大学, 2015.
[9] FELLI M, FALCHI M, DUBBIOSO G. Direct and indirect experimental methodologies for the hydro-acoustic analysis of marine propellers[C]//Proceedings of the 30th Symposium on Naval Hydrodynamics. Hobart, Tasmania, Australia, 2014.