颗粒阻尼技术作为抑制低频振动的重要方式,可应用于抑制船舶低频振动。为探索颗粒阻尼器的耗能机理,本文基于离散单元法对颗粒阻尼器在不同振幅、不同填充比、不同振动频率下的运动状态和耗能进行研究。结果表明:颗粒在填充比为50%的工况下,在不同振动频率和振幅激励时颗粒的运动状态比较丰富,出现了不规律的耗能现象;填充比为70%、90%时,颗粒的耗能随着振动的幅值和频率的增加而增加,特别是在颗粒填充比为70%、振动频率为120 Hz、振幅为5 mm的情况下,颗粒的耗能达到了顶峰。在损耗因子方面,振幅在1~4 mm时90%填充比要明显高于50%、70%填充比;在振幅为5 mm时,90%填充比低于70%填充比而高于50%填充比。
As an important way to suppress low-frequency vibration, particle damping technology can be applied to suppress low-frequency vibration of ships. In order to further study the energy dissipation mechanism of particle dampers, this paper studies the motion state and energy consumption of the particle damper at different amplitudes, different filling ratios, and different vibration frequencies based on discrete element method. The results show that when the particle filling ratio is 50%, the motion state of the particles is relatively abundant when the particles are excited at different vibration frequencies and amplitudes, and irregular energy consumption occurs. When the filling ratio is 70% and 90%, the energy consumption of the particles increases with the increase of the amplitude and frequency of vibration, especially when the particle filling ratio is 70%, the vibration frequency is 120 Hz, and the amplitude is 5 mm, the particle energy consumption reached its peak. In terms of loss factor, the 90% filling ratio is significantly higher than the 50% and 70% filling ratios when the amplitude is 1 mm-4 mm. At an amplitude of 5 mm, the 90% filling ratio was lower than that of the 70% filling ratio and higher than that of the 50% filling ratio.
2024,46(3): 84-90 收稿日期:2022-05-07
DOI:10.3404/j.issn.1672-7649.2024.03.015
分类号:TH212;TH213.3
作者简介:昝浩(1987-),男,博士,讲师,研究方向为船舶及海洋工程结构减振降噪
参考文献:
[1] PAGET A L. Vibration in steam turbine buckets and damping by impacts[J]. Engineering, 1937, 143: 305–307
[2] MASRI S F. Analytical and experimental studies of multiple-unit impact dampers[J]. Journal of the Acoustical Society of America, 1969, 45(5): 1111–1117
[3] DARABI B. Viscoelastic behaviour of element of particle damper: experimental and numerical study[J]. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 2019, 23(4): 1–11
[4] ZHSNG K, XI Y, CHEN T, et al. Experimental studies of tuned particle damper: Design and characterization[J]. Mechanical Systems & Signal Processing, 2018, 99: 219–228
[5] 胡溧, 黄其柏, 许智生. 颗粒阻尼的回归分析研究[J], 中国机械工程, 2008, 19(23): 2834–2837.
[6] 胡溧, 杨驰杰, 杨啟梁, 等. 周期颗粒阻尼复合板结构的带隙特性研究[J]. 振动与冲击, 2017, 36(3): 77–82
[7] OLSON S E. An analytical particle damping model[J]. Journal of Sound and Vibration, 2003, 264: 1155–1166
[8] LEI X F. Non-obstructive particle damping using principles of gas-solid flows[J]. Journal of Mechanical Science and Technology, 2017, 31(3): 1057–1065
[9] ZHANG K, CHEN T N, WANG X P, et al. Rheology behavior and optimal damping effect of granular particles in a non-obstructive particle damper[J]. Journal of Sound and Vibration, 2016, 364: 30–43
[10] SALUEA C, PSCHEL T, SERGEIE E. Dissipative properties of vibrated granular materials[J]. Physical Review Letters, 1999, 59(4): 4422–4425
[11] SACK A, HECKEL M, KOLLMER J E, et al. Energy dissipation in driven granular matter in the absence of gravity[J]. Physical Review Letter, 2013, 111(1): 018001
[12] ESHUIS P, WEELE KVD, MEER DVD, et al. Phase diagram of vertically shaken granular matter[J]. Physics of Fluids, 2007, 19: 123301
[13] SANOO. Dilatancy, buckling, and undulations on a vertically vibrating granular layer[J]. Physical Review E, 2005, 72(5): 051302
[14] 胡国明. 颗粒系统的离散元素法分析仿真[M]. 武汉: 武汉理工大学出版社, 2010.
[15] AHMAD N, RANGANATH R, GHOSAL A. Modeling and experimental study of a honeycomb beam filled with damping particles[J]. Journal of Sound and Vibration, 2017, 391(5): 20–34
[16] 夏兆旺, 茅凯杰, 王雪涛, 等. 海洋平台桁架结构半主动颗粒阻尼减振技术研究[J]. 振动与冲击, 2018, 37(4): 93–98
[17] 姚冰, 陈前, 项红荧, 等. 颗粒阻尼器近似理论模型研究[J]. 机械工程学报, 2015, 51(3): 87–94
[18] 段永强, 尹忠俊, 陈兵. 颗粒运动学行为对阻尼器耗能特性影响的研究[J]. 振动与冲击, 2020, 39(4): 7
[19] ZE HUI J, YUN YING W, JING W. Subharmonic motion of granular particles under vertical vibrations[J]. EPL Europhysics Letters, 2006, 74(3): 417
[20] HSIAU S S, WU M H, CHEN C H. Arching phenomena in a vibrated granular bed[J]. Powder technology, 1998, 99(2): 185–193
[21] WASSGREN C R, BRENNEN C E, HUNT M L. Vertical vibration of a deep bed of granular material in a container [J]. Journal of Applied Mechanics, 1996, 63(3): 712-719.
[22] 李伟. 冲击减振理论的离散单元法研究及应用[D]. 西安: 西安交通大学, 1997.