与常规水下机器人不同,全海深水下机器人面临万米的垂直剖面水深,当前全海深水下机器人的潜浮过程占据了其入水后的大部分时间,导致全海深水下机器人运动效率不高。本文通过对潜浮运动模式及低阻构形方式的分析,结合变形—变结构水下机器人的设计思想,构建了一种适应于水下水平面与垂直面的高效运动模式,提出一种面向全海深高效运动的自变形水下机器人的实现方法。在对自变形水下机器人潜浮阶段与海底直航阶段运动进行模型分析的基础上,提出基于有效工作时间的运动效率评价方法。最后结合流体仿真软件Fluent对阻力系数的辨识,对自变形水下机器人的运动效率进行评估,验证了该自变形的构形方式相较于传统回转外形构形方式在面向全海深工作环境的高效性。
Different from the conventional underwater vehicles, full-ocean depth underwater vehicles face a vertical depth over 10000 meters. At present, the diving and floating process of full-ocean depth underwater vehicles take up most of the time after entering the water, which resulting in inefficient of them. In this paper, based on the analysis of diving and floating process mode and low resistance configuration mode, combined with the design idea of variable structure underwater vehicle, we construct an efficient motion mode which are suitable for horizontal and vertical plant, propose the implementation of self-deformable underwater vehicle for the full-depth ocean. Based on the modeling and analysis of the motion mechanism of the underwater vehicle in the diving and floating process and the direct route stage, we propose an evaluation method of motion efficiency based on effective working time. Finally, combined with the identification of the resistance coefficient by the fluid simulation software Fluent, the efficiency of the self-deformable underwater vehicle is evaluated, which verifies the efficiency of the self-deformable configuration mode is compared with the traditional rotary configuration mode in the full sea depth working environment.
2024,46(3): 105-111 收稿日期:2023-01-10
DOI:10.3404/j.issn.1672-7649.2024.03.018
分类号:TP242
基金项目:国家自然科学基金面上项目(62173320);辽宁省兴辽英才计划项目(XLYC1807234)
作者简介:翟亚东(1998-),男,硕士研究生,研究方向为新型全海深水下机器人设计、运动机理分析
参考文献:
[1] ACKERMAN E, KIEFER P K. Ex-NASA engineers built a robot sub that transforms into a skilled humanoid[J]. IEEE Spectrum, 2019, 56(8): 22-29.
[2] 唐元贵, 王健, 陆洋, 等. “海斗”号全海深自主遥控水下机器人参数化设计方法与试验研究[J]. 机器人, 2019, 41(6): 697-705.
[3] 龚昊. 立扁体AUV的操纵性与运动控制研究[D]. 哈尔滨: 哈尔滨工程大学, 2017.
[4] 王妹婷, 齐永锋, 汤方平, 等. 水下机器人外形优化设计[J]. 机床与液压, 2014, 42(5): 76-79.
[5] WON D J, KIM J, KIM J. Design optimization of duct-type AUVs using CFD analysis[J]. Intelligent Service Robotics, 2015, 8(4): 233-245.
[6] STEVENSON P, FURLONG M, DORMER D. AUV Design: shape, drag and practical issues[J]. Sea Technology, 2009, 50(1): 41-44.
[7] 姜言清, 李晔, 王友康, 等. 全海深水下机器人的重力和浮力计算[J]. 哈尔滨工程大学报, 2020, 41(4): 481-486.
[8] WANG J, TANG Y Gui, CHEN C Xu, et al. Terrain matching localization for hybrid underwater vehicle in the Challenger Deep of the Mariana Trench[J/OL]. Frontiers of Information Technology & Electronic Engineering, 2020, 21(5): 749-759.https://doi.org/10.1631/FITEE.1900556.
[9] 俞建成, 陈质二, 王振宇, 等. 自主水下滑翔机. [M]. 北京: 科学出版社, 2020.
[10] 孙洪鸣, 郭威, 周悦, 等. 全海深着陆车机构设计及其潜浮运动性能分析[J]. 机器人. 2020, 42(2): 207-214
[11] 胡志强. 海洋机器人水动力数值计算方法及其应用研究[D]. 北京: 中国科学院大学, 2013.