为提升柴油机选择性催化还原(简称SCR)装置在瞬态工况运行时的排放控制品质,本文针对SCR装置设计了一种非线性自抗扰控制系统并基于改进粒子群算法对非线性反馈增益开展了寻优工作。研究结果表明,与前期的非线性反馈增益相比,经改进算法整定后的非线性反馈增益提升了控制系统的鲁棒性,而且经整定后的非线性反馈增益可使得NOx排放控制的准确度提升1.5%,可使过渡过程时间缩短11%。
In order to improve the emission control quality of diesel engine selective catalytic reduction (SCR) unit under transient operating conditions, a nonlinear active disturbance rejection control system was designed for SCR unit and optimization of nonlinear feedback gain was carried out based on improved particle swarm optimization algorithm. The results show that compared with the previous nonlinear feedback gain, the nonlinear feedback gain adjusted by the improved algorithm improves the robustness of the control system, and the calibrated nonlinear feedback gain can increase the accuracy of NOx emission control by 1.5% and shorten the transition process time by 11%.
2024,46(3): 131-136 收稿日期:2023-01-30
DOI:10.3404/j.issn.1672-7649.2024.03.023
分类号:TK422
基金项目:工信部等技术船舶项目(20191g0100)
作者简介:黎洪亮(1998-),男,硕士研究生,研究方向为轮机自动化
参考文献:
[1] 覃军. 降低柴油机NO_X排放的SCR系统控制策略研究[D]. 武汉: 武汉理工大学, 2007.
[2] SCHÄR C M, ONDER C H, GEERING H P, et al. Control of a urea SCR catalytic converter system for a mobile heavy duty diesel engine[J]. SAE Transactions, 2003, 112: 1180-1188
[3] Improvement of low-temperature performance of the NOx reduction efficiency on the Urea-SCR catalysts[C]//SAE 2013 World Congress and Exhibition, 2013.
[4] 石秀勇, 罗亨波, 倪计民, 等. 基于模型的柴油机Urea-SCR系统闭环控制策略仿真[J]. 内燃机学报, 2017, 35(4): 346-353.
SHI Xiuyong, LUO Hengbo, NI Jimin, et al. Simulation of closed-loop control strategy for urea-SCR system of diesel engine based on model[J]. Transactions of CSICE, 2017, 35(4): 346-353.
[5] 张仁敏. 基于线性自抗扰技术的添蓝喷射控制策略研究[D]. 武汉: 武汉理工大学, 2016.
[6] SONG Q, ZHU G. Model-based closed-loop control of urea SCR exhaust aftertreatment system for diesel engine[C]// SAE World Congress & Exhibition, 2002.
[7] JOHN N. C. Control challenges for optimal NOx conversion efficiency from SCR aftertreatment systems[C]//SAE 2009 World Congress, 2009.
[8] FRANK W, ROBERT C, EDWIN V D E. Is closed-loop SCR control required to meet future emission targets?[C]//2007.
[9] 刘丙善. 基于自抗扰控制技术的车用选择性催化还原系统控制策略研究[D]. 武汉: 武汉理工大学, 2015.
[10] 刘丙善, 吕林, 张仁敏. 柴油机Urea-SCR装置非线性自抗扰控制系统研究[J]. 哈尔滨工程大学学报, 2017, 38(3): 385-391.
LIU Bingshan, LV Lin, ZHANG Renmin. Study on nonlinear active disturbance rejection control system for urea-SCR device of diesel engine[J]. Journal of Harbin Engineering University, 2017, 38(3): 385-391.
[11] 韩京清. 自抗扰控制技术—估计补偿不确定因素的控制技术[M]. 北京: 国防工业出版社, 2008.
[12] 张继荣, 张天. 基于改进粒子群算法的PID控制参数优化[J]. 计算机工程与设计, 2020, 41(4): 1035-1040.
ZHANG Jirong, ZHANG Tian. Optimization of PID control parameters based on improved particle swarm optimization [J]. Computer Engineering and Design, 20, 41(4): 1035-1040.
[13] 康新宇, 刘惠康, 柴琳, 等. 基于改进型粒子群算法优化的塔式吊车自抗扰控制[J]. 制造业自动化, 2022, 44(9): 106-111.
KANG Xinyu, LIU Huikang, CHAI Lin, et al. Active disturbance rejection control of tower crane based on improved particle swarm optimization[J]. Manufacturing Automation, 2022, 44(9): 106-111.
[14] 余胜威. Matlab优化算法案例分析与应用[M]. 北京: 清华大学出版社, 2014.