水下目标检测具有重要意义,在军事和民用领域都发挥着重要作用。实际场景中可以获得的声呐图像非常有限,且声呐图像的信噪比较低,无法得到较好的检测结果。因此,本文引入小样本学习,基于Faster R-CNN两阶段目标检测算法,选择不同的策略对模型进行优化,得到了较好的检测结果并验证了小样本目标检测在声呐图像领域的可行性。根据混响对声呐图像的影响进行仿真实验,得到不同混响背景下的声呐图像,对比分析了不同数据集下训练模型的检测性能。实验结果表明,在训练样本中增加混响信号可以提高低信噪比条件下的目标检测精度。
Underwater target detection is a research problem of great significance and plays an important role in both military and civilian fields. The sonar images available in real scenes are very limited and the low signal-to-noise ratio of the sonar images does not allow for satisfactory detection results. Therefore, this paper introduces few-shot learning, based on the Faster R-CNN two-stage target detection algorithm, and chooses different strategies to optimize the model, obtaining better detection results and verifying the feasibility of few-shot target detection in the field of sonar images. Then, simulation experiments are conducted to obtain sonar images under different reverberation backgrounds according to the effect of reverberation on sonar images, and the detection performance of the training model under different datasets is compared and analyzed. Experimental results show that adding reverberation signals to the training samples can improve the target detection accuracy under low signal-to-noise ratio conditions.
2024,46(3): 151-156 收稿日期:2023-02-07
DOI:10.3404/j.issn.1672-7649.2024.03.027
分类号:TN911.7
作者简介:岳亚丹(1997-),女,硕士研究生,研究方向为水声信号处理
参考文献:
[1] 李庆武, 霍冠英, 周妍. 声呐图像处理[M]. 北京: 科学出版社, 2015: 98.
[2] HURTÓS N, PALOMERAS N, NAGAPPA S, et al. Automatic detection of underwater chain links using a forward-looking sonar[C]//2013 MTS/IEEE OCEANS-Bergen. IEEE, 2013: 1-7.
[3] MYERS V, FAWCETT J. A template matching procedure for automatic target recognition in synthetic aperture sonar imagery[J]. IEEE Signal Processing Letters, 2010, 17(7): 683-686.
[4] KALYAN B, BALASURIYA A. Sonar based automatic target detection scheme for underwater environments using CFAR techniques: a comparative study[C]//Proceedings of the 2004 International Symposium on Underwater Technology (IEEE Cat. No. 04EX869). IEEE, 2004: 33-37.
[5] WILLIAMS D P. Fast target detection in synthetic aperture sonar imagery: A new algorithm and large-scale performance analysis[J]. IEEE Journal of Oceanic Engineering, 2014, 40(1): 71-92.
[6] VALDENEGRO-TORO M. End-to-end object detection and recognition in forward-looking sonar images with convolutional neural networks[C]//2016 IEEE/OES Autonomous Underwater Vehicles (AUV). IEEE, 2016: 144-150.
[7] 张元科. 水下声纳图像目标检测技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2013.
[8] 凡志邈, 李海林, 夏伟杰, 等. 基于深度学习的成像声纳水下目标的检测与分类[C]// 中国声学学会水声学分会2019年学术会议, 2019: 266-268.
FAN Z M, LI H L, XIA W J, et al. Detection and classification of underwater objects based on deep learning[C]// 2019 Academic Conference of the Hydroacoustics Branch of the Chinese Society of Acoustics, 2019: 266-268.
[9] 王非, 王欣宇, 周景春, 等. 一种基于YOLOv3的水下声呐图像目标检测方法[J]. 电子与信息学报, 2022, 44(10): 3419-3426.
WANG F, WANG X Y, ZHOU J C, et al. An underwater object detection method for sonar image based on YOLOv3 model[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3419-3426.
[10] 盛子旗, 霍冠英. 样本仿真结合迁移学习的声呐图像水雷检测[J]. 智能系统学报, 2021, 16(2): 385-392.
SHENG Z Q, HUO G Y. Detection of underwater mine target in sidescan sonar image based on sample simulation and transfer learning[J]. CAAI transactions on intelligent systems, 2021, 16(2): 385-392.
[11] SUN B, LI B, CAI S, et al. Fsce: Few-shot object detection via contrastive proposal encoding[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021: 7352-7362.
[12] FAN Q, ZHUO W, TANG C K, et al. Few-shot object detection with attention-RPN and multi-relation detector[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 4013-4022.
[13] KANG B, LIU Z, WANG X, et al. Few-shot object detection via feature reweighting[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 8420-8429.
[14] MIDDLETON D. A statistical theory of reverberation and similar first order scattered fields[J]. IEEE Transactions on Information Theory, 1967, 13(3): 372-414.
[15] 阿斯顿·张, 李沐, 扎卡里·C. 立顿, 等. 动手学深度学习[M]. 北京: 人民邮电出版社, 2019: 250-251.
[16] ZHANG Tianwen0825 (2022) Official-SSDD. https://github.com/TianwenZhang0825/Official-SSDD [EB/OL].
[17] Mmfewshot Contributors (2021) OpenMMLab Few Shot Learning Toolbox and Benchmark [EB/OL]. https://github.com/open-mmlab/mmfewshot.
[18] REZATOFIGHI H, TSOI N, GWAK J Y, et al. Generalized intersection over union: A metric and a loss for bounding box regression[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 658-666.