采用数值模拟方法研究水下航行体标准模型Suboff的尾流场,重点研究航行体艇体、尾舵和指挥台尾流的演化及其干涉特征。研究结果揭示了艇体尾流速度很快满足Gaussian分布的自相似特征,艇体与尾舵相互作用后的尾流速度接近Gaussian分布特征,但艇体与尾舵、指挥台三者相互作用后的尾流速度则明显不满足Gaussian分布特征。因此,数值计算的研究结果明确尾舵对整个航行体尾流的影响在设计中几乎可以忽略不计,但需要考虑指挥台对整个航行体尾流的影响。
The wake field of the standard model Suboff of underwater vehicle is studied numercially, with emphasis on the evolution and interference characteristics of wake flow of hull, rudder and sail. The results reveal that the hull wake velocity quickly satisfies the self-similar characteristics of Gaussian distribution, and the wake velocity after the interaction between the hull and the rudder is close to the Gaussian distribution, but the wake velocity after the interaction between the hull and the rudder and the sail obviously does not meet the Gaussian distribution characteristics. Therefore, the research results of numerical calculation make it clear that the influence of the rudder on the wake of the whole body can be ignored in the design, but it is necessary to consider the influence of the sail on the wake of the whole body.
2024,46(4): 27-34 收稿日期:2023-02-24
DOI:10.3404/j.issn.1672-7649.2024.04.006
分类号:U661.1
基金项目:气动噪声控制重点实验室项目(ANCL-20220302);空气动力学国家重点实验室项目(SKLA-20200302)
作者简介:刘明坤(1998-),男,硕士研究生,研究方向为航行体流动及噪声
参考文献:
[1] 柏铁朝, 卢锦国. 附体对潜艇阻力及尾部伴流场的影响[J]. 舰船科学技术, 2013, 35(3): 47-51.
BAI Tiechao, LU Jinguo. Analysis of the impact of appendages on submarine resistance and wake flow field[J]. Ship science and technology, 2013, 35(3): 47-51.
[2] MERZ R A, YI C H, PRZIREMBEL C E G. The subsonic near-wake of an axisymmetric semielliptical afterbody[J]. AIAA Journal, 1985, 23(10): 1512-1517.
[3] TSAI J F, SUNG C H, GRIFFIN M J, et al. Effects of grid resolution on axisymmetric stern flows computed with an incompressible viscous flow solver[J]. Journal of the Chinese Institute of Engineers, 1996, 19(4): 429-438.
[4] SIMPSON R L. Junction flows[J]. Annual Review of Fluid Mechanics, 2001, 33: 415-443.
[5] PAN Y C, ZHANG H X, ZHOU Q D. Numerical prediction of submarine hydrodynamic coefficients using CFD Simulation[J]. Journal of Hydrodynamics, 2012, 24(6): 840-847.
[6] GROVES N C, HUANG T T, CHANG M S. Geometric characteristics of DARPA (Defense Advanced Research Projects Agency) SUBOFF models (DTRC model numbers 5470 and 5471) [R]: David Taylor Research Center Bethesda MD Ship Hydromechanics Dept, 1989.
[7] HUANG T, LIU H. Measurements of flows over an axisymmetric body with various appendages in a wind tunnel: the DARPA SUBOFF experimental program [J]. Fiuid Dynamics, 1994.
[8] JIMÉNEZ J M, HULTMARK M, SMITS A J. The intermediate wake of a body of revolution at high Reynolds numbers[J]. Journal of Fluid Mechanics, 2010, 659: 516-539.
[9] ASHOK A, VAN BUREN T, SMITS A J. Asymmetries in the wake of a submarine model in pitch[J]. Journal of Fluid Mechanics, 2015, 774: 416-442.
[10] JIMENEZ J M, REYNOLDS R T, SMITS A J. The effects of fins on the intermediate wake of a submarine model [J]. Journal of Fluids Engineering-Transactions of the Asme, 2010, 132(3): 031102.
[11] KUMAR P, MAHESH K. Large-eddy simulation of flow over an axisymmetric body of revolution[J]. Journal of Fluid Mechanics, 2018, 853: 537-563.
[12] 杨琼方, 王永生, 张志宏. 全附体潜艇粘性流场的RANS模拟及场量和涡量的校验分析[J]. 计算力学学报, 2012, 29(4): 567-573.
YANG Qiongfang, WANG Yongsheng, ZHANG Zhihong. RANS simulation of viscous flow over full appended submarine and field variables validation and vorticity analysis[J]. Chinese Journal of Computational Mechanics, 2012, 29(4): 567-573.
[13] 邱辽原. 潜艇粘性流场的数值模拟及其阻力预报的方法研究 [D]. 武汉: 华中科技大学, 2006.
[14] POSA A, BALARAS E. A numerical investigation about the effects of Reynolds number on the flow around an appended axisymmetric body of revolution[J]. Journal of Fluid Mechanics, 2019, 884(41): 1-38.
[15] POSA A, BALARAS E. A numerical investigation of the wake of an axisymmetric body with appendages[J]. Journal of Fluid Mechanics, 2016, 792: 470-498.
[16] POSA A, BALARAS E. Large-Eddy simulations of a notional submarine in towed and self-propelled configurations[J]. Computers & Fluids, 2018, 165: 116-126.
[17] QU Y, WU Q, ZHAO X, et al. Numerical investigation of flow structures around the DARPA SUBOFF model[J]. Ocean Engineering, 2021, 239: 1-13.
[18] TOWNSEND A A. The structure of turbulent shear flow[M]. THE UNIV. PR, 1956.
[19] POPE S B. Turbulent flows [M]. Cambridge: Cambridge University Press, 2000.
[20] LIU H-L, HUANG T T. Summary of DARPA SUBOFF experimental program data [R]. Naval surface warfare center carderock div bethesda md hydromechanics, 1998.
[21] JIMENEZ J M. High Reynolds number flows about bodies of revolution with application to submarines and torpedoes [D]. Princeton: Princeton University, 2007.
[22] WILCOX D C. Turbulence modeling for CFD [M]. DCW industries La Canada, CA, 1998.
[23] TAHARA Y, WILSON R V, CARRICA P M, et al. RANS simulation of a container ship using a single-phase level-set method with overset grids and the prognosis for extension to a self-propulsion simulator[J]. Journal of Marine Science and Technology, 2006, 11(4): 209-228.
[24] SEZEN S, DOGRUL A, DELEN C, et al. Investigation of self-propulsion of DARPA Suboff by RANS method[J]. Ocean Engineering, 2018, 150: 258-271.
[25] TUMMERS M J, HANJALIĆ K, PASSCHIER D M, et al. Computations of a turbulent wake in a strong adverse pressure gradient[J]. International Journal of Heat and Fluid Flow, 2007, 28(3): 418-428.