轮缘推进器将电机与螺旋桨一体化设计,具有较高的应用前景。本文以NO.19A+Ka4-70导管螺旋桨为基础,将仿真值与试验值进行比较,各项参数的最大偏差均在5%以内,吻合较好,并构造反厚度规律的桨叶。基于STAR-CCM+仿真软件对轮缘推进器进行水动力性能的数值计算,采用SST k-ω湍流模型进行计算,对比分析轮缘推进器的外形、导管种类、桨毂、轮缘宽度对于推进器水动力性能的影响。
The rim-driven thruster integrates the motor and propeller, it is a new type of ship propeller and has a high application prospect. Based on the NO.19A+Ka4-70 duct propeller, the simulation value is compared with the test value and the maximum deviation of each parameter is within 5%, and the reverse blade is constructed. Based on STAR-CCM+ simulation software to calculate the hydrodynamic performance of the rim-driven thruster, the SST k-ω turbulence model is used to calculate the effect of duct type, hub and rim width on the hydrodynamic performance of the thruster.
2024,46(4): 40-46 收稿日期:2023-03-01
DOI:10.3404/j.issn.1672-7649.2024.04.008
分类号:U664.33
基金项目:高校间横向科研项目(829203-I22101)
作者简介:周赵烨(1998-),男,硕士研究生,研究方向为螺旋桨水动力性能
参考文献:
[1] 杨植, 严新平, 欧阳武, 等. 船舶轮缘推进装置驱动电机及控制方法研究进展[J]. 电工技术学报, 2022, 37(12): 2949-2960.
YANG Zhi, YAN Xinping, OUYANG Wu, et al. Research progress of driving motor and control method of ship rim propulsion device[J]. Journal of Electrical Technology, 2022, 37(12): 2949-2960.
[2] REZA S, HASSAN G, DAVID M, et al. Numerical hydrodynamic evaluation of propeller (with hub taper) and podded drive in azimuthing conditions[J]. Ocean Engineering, 2014, 76.
[3] 贾文超, 樊思明, 刘正林, 等. 无轴轮缘推进器中可拆卸螺旋桨的性能分析[J]. 船舶工程, 2017, 39(8): 25-29.
JIA Wenchao, FAN Siming, LIU Zhenglin, et al. Performance analysis of the removable propeller in the axeless rim thrusters[J]. Ship Engineering, 2017, 39(8): 25-29.
[4] 左新平, 郑少雄, 周俊雄. 某拖轮200 kW轮缘推进器水动力性能分析[J]. 广东造船, 2022, 41(4): 20-23.
ZUO Xinping, ZHENG Shaoxiong, ZHOU Junxiong. Hydrodynamic performance analysis of 200 kW tupropeller[J]. Guangdong Shipbuilding, 2022, 41(4): 20-23.
[5] 熊立众, 孙江龙. 轮缘推进器水动力性能数值分析[J]. 舰船科学技术, 2021, 43(3): 83-88.
XIONG Lizhong, SUN Jianglong. Numerical analysis of the hydrodynamic performance of the rim thrusters[J]. Ship Science and Technology, 2021, 43(3): 83-88.
[6] 杨蕾, 周军伟, 闫文辉, 等. 轮缘推进器反厚度规律桨叶的翼型对比分析[J]. 中国造船, 2022, 63(1): 113-125.
YANG Lei, ZHOU Junwei, YAN Wenhui, et al. Comparative analysis of airfoil of reverse thickness of wheel propeller[J]. China Shipbuilding, 2022, 63(1): 113-125.
[7] 兰加芬, 欧阳武, 严新平. 无轴轮缘推进器水动力性能分析及桨叶强度校核[J]. 船舶工程, 2018, 40(10): 52-58.
LAN Gafen, OUYANG Wu, YAN Xinping. Hydrodynamic performance analysis and blade strength check of the shaft propeller[J]. Ship Engineering, 2018, 40(10): 52-58.
[8] LIU Bao, VANIERSCHOT M. Numerical study of the hydrodynamic characteristics comparison between a ducted propeller and a rim-driven thruster[J]. Applied Sciences, 2021, 11(11): 4919.
[9] YAKOVLEV A Y, SOKOLOV M A, MARINICH N V. Numerical design and experimental verification of a rim-driven thruster[J]. Second International Symposium on Marine Propulsors smp'11, 2011, 8: 8150.
[10] DUBAS A. Robust automated computational fluid dynamics analysis and design optimization of rim driven thrusters[J]. University of Southampton, 2014(10): 1-11.
[11] DUBAS A J, BRESSLOFF N W, FANGOHR H, et al. Computational fluid dynamics simulation of a rim driven thruster[J]. University of Southampton, 2011(9): 3-4.
[12] HUGHES A W, SHARKH S A, TURNOCK S R. Design and testing of a novel electromagnetic tip-driven thruster[M]. International Society of Offshore and Polar Engineers, 2000.
[13] ABU-SHARKH S M, TURNOCK S R, DRAPER G. Performance of a tip-driven electric thrusters for unmanned underwater vehicles[C]// The Eleventh (2001) International Offshore and Polar Engineering Conference, 2001.
[14] 盛振邦, 刘应中. 船舶原理(下册)[M]. 上海: 上海交通大学出版社, 2004.
[15] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32.
[16] SONG B W, WANG Y J, TIAN W L. Open water performance comparison between hub-type and hubless rim driven thrusters based on CFD method[J]. Ocean Engineering, 2015, 103: 55-63.
[17] OOSTERVELD M . Wake adapted ducted propellers[J]. H. Veenman & Zonen, 1970(2): 8-130.
[18] ROACHE, PJ . Quantification of uncertainty in computational fluid dynamics[J]. Annual Review of Fliud Mechanics, 1997.