针对强天气条件下相关参数难以获取,提出一种由水面智能拖体、水下高机动AUV和高强度拖缆组成的“水下风筝”式三体AUV,有望实现台风现场海气界面与上层水体同步探测。为探究高海况下“水下风筝”式AUV技术可行性,对其在波浪影响的力学响应特性进行分析,建立基于微振幅波理论和经典多体刚柔结构动力学建模方法的“水下风筝”式AUV动力学模型,采用数值模拟方法获得了不同拖曳速度、不同海况等级下AUV端受力和深度值,结果表明从力学角度当前技术条件可满足“水下风筝”式AUV高海况下同步观测需求。
In response to the problem of difficulty in obtaining relevant parameters under extreme weather conditions, an innovative underwater-kite AUV is proposed, which is composed of a surface intelligent towed body, an underwater highly mobile AUV and a high-strength towing cable, and is expected to achieve simultaneous detection of the sea-air interface and the upper water column at the typhoon site. In order to investigate the technical feasibility of the underwater-kite AUV under high sea state, an analysis of its mechanical response characteristics under the influence of waves was carried out, and an underwater-kite AUV dynamics model based on micro-amplitude wave theory and classical multi-body rigid-flexible structure dynamics modeling method was established. Numerical simulation was used to obtain the force and depth values of the AUV at different towing speeds and sea state levels, and the results showed that the current technical conditions can meet the demand for simultaneous observation of the underwater-kite AUV in high sea state from the mechanical point of view.
2024,46(4): 78-87 收稿日期:2023-03-04
DOI:10.3404/j.issn.1672-7649.2024.04.016
分类号:U674.941
基金项目:机器人学国家重点实验室自主课题资助(2021-Z07);国家自然科学基金面上项目(41976183)
作者简介:张行健(1996-),男,硕士研究生,研究方向为新概念海洋机器人技术
参考文献:
[1] GAO Z, GEDDES R R, MA T. Direct and indirect economic losses using typhoon-flood disaster analysis: An application to Guangdong Province, China[J]. Sustainability, 2020, 12(21): 8980.
[2] 端义宏, 陈联寿, 梁建茵, 等. 台风登陆前后异常变化的研究进展[J]. 气象学报, 2014, 72(5): 969-986.
DUAN Y H, CHEN L S, LIANG J Y, et al. Research progress in the unusual variations of typhoons before and after landfalling[J]. Acta Meteorologica Sinica, 2014, 72(5): 969-986.
[3] 陈大可, 雷小途, 王伟, 等. 上层海洋对台风的响应和调制机理[J]. 地球科学进展, 2013, 28(10): 1077-1086.
CHEN D K, LEI X T, WANG W, et al. Upper ocean response and feedback mechanisms to typhoon[J]. Advances in Earth Science, 2013, 28(10): 1077-1086.
[4] LANDSEA C W, CANGIALOSI J P. Have we reached the limits of predictability for tropical cyclone track forecasting?[J]. Bulletin of the American Meteorological Society, 2018, 99(11): 2237-2243.
[5] ZHOU F, TOTH Z. On the prospects for improved tropical cyclone track forecasts[J]. Bulletin of the American Meteorological Society, 2020, 101(12): E2058-E2077.
[6] YU H, CHEN G, ZHOU C, et al. Are we reaching the limit of tropical cyclone track predictability in the Western North Pacific?[J]. Bulletin of the American Meteorological Society, 2022, 103(2): E410-E428.
[7] Science. 125 Questions: exploration and discovery. [EB/OL]. (2021-05-14) [2022-06-16].https://www.science.org/content/resource/125-questions-exploration-and-discovery.
[8] BALAGURU K, FOLTZ G R, LEUNG L R, et al. Global warming-induced upper-ocean freshening and the intensification of super typhoons[J]. Nature communications, 2016, 7(1): 13670.
[9] XU X, VOERMANS J J, MOON I J, et al. Sea spray impacts on tropical cyclone olwyn using a coupled atmosphere‐ocean‐wave model[J]. Journal of Geophysical Research: Oceans, 2022, 127(8): e2022JC018557.
[10] TIAN D, ZHANG H, WANG S, et al. Sea surface wind structure in the outer region of tropical cyclones observed by wave gliders[J]. Journal of Geophysical Research: Atmospheres, 2023: e2022JD037235.
[11] BRETT A, LEAPE J, ABBOTT M, et al. Ocean data need a sea change to help navigate the warming world[J]. Nature, 2020, 582(7811): 181-183.
[12] DHANAK M, AN E, COUSON R, et al. Magnetic field surveys of coastal waters using an AUV-towed magnetometer[C]//2013 OCEANS-San Diego. IEEE, 2013: 1-4.
[13] MILLER L G, VON ELLENRIEDER K D. Modeling and simulation of an AUV-towfish system[C]//2013 OCEANS-San Diego. IEEE, 2013: 1-9.
[14] KOSTENKO V V, TOLSTONOGOV A Y, MOKEEVA I G. The combined AUV motion control with towed magnetometer[C]//2019 IEEE Underwater Technology (UT). IEEE, 2019: 1-7.
[15] ABREU P, ANTONELLI G, ARRICHIELLO F, et al. Widely scalable mobile underwater sonar technology: An overview of the H2020 WiMUST project[J]. Marine Techonology Society Journal, 2016, 50(4): 42-53.
[16] Al-KHATIB H, ANTONELLI G, CAFFAZ A, et al. The widely scalable mobile underwater sonar technology (WiMUST) project: an overview[J]. OCEANS 2015-Genova, 2015: 1-5.
[17] ANTONELLI G, CAFFAZ A, CASALINO G, et al. The widely scalable mobile underwater sonar technology (WiMUST) H2020 project: first year status[C]//OCEANS 2016-Shanghai. IEEE, 2016: 1-8.
[18] SIMETTI E, INDIVERI G, PASCOAL A M. WiMUST: A cooperative marine robotic system for autonomous geotechnical surveys[J]. Journal of Field Robotics, 2021, 38(2): 268-288.
[19] KOSTENKO V V, LVOV O Y. Combined systems of communication and navigation for autonomous underwater robot equipped with a float towed unit[J]. Underwater Investigation and Robotics, 2017, 1(23): 31-43.
[20] BYKANOVA A Y, KOSTENKO V V, MICHAILOV D N. Development of towed radio buoy for AUV[C]//IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2021, 720(1): 012003。
[21] PAN G, YANG Z D, DU X X. Research on dynamic simulation of AUV launching a towed navigation buoyage[C]//Applied Mechanics and Materials. Trans Tech Publications Ltd, 2013, 433: 1170-1174.
[22] 薄玉清. 波浪滑翔机动力学建模及运动分析[D]. 沈阳:沈阳工业大学, 2017.
[23] VAZ M A, PATEL M H. Three-dimensional behaviour of elastic marine cables in sheared currents[J]. Applied Ocean Research, 2000, 22(1): 45-53.
[24] 王海波. 水下拖曳升沉补偿液压系统及其控制研究[D]. 杭州:浙江大学, 2009.
[25] 李青美, 吴林键, 王元战, 等. 高等级海况条件下移动式海上基地动力响应分析[J]. 海洋科学, 2016, 40(8): 129-137.
LI Q M, WU L J, WANG Y Z, et al. Hydrodynamic response of a mobile offshore base under high sea states[J]. Marine Sciences, 2016, 40(8): 129-137.