为揭示船用长冲程低速柴油机健康状态下的振动特征,采用小波包能量谱(Wavelet Packet Energy Spectrum, WPES)和改进的总体平均经验模态分解(Modified Ensemble Empirical Mode Decomposition, MEEMD)结合的特征提取方法,对典型推进工况下低速机的表面振动信号进行3层小波包分解和重构。通过对能量占比较大的节点采用MEEMD方法进行分解,获得IMF1分量频谱。研究结果表明,在40%以下的较低发动机负荷时,各单次燃烧循环的振动波动较小,振动幅值基本一致。提升至50%以上发动机负荷时,燃烧引起振动波动明显增强。50%工况下,中高频能量占总能量的41.51%,为主要振动源。
To reveal the vibration characteristics of marine long-stroke low-speed diesel engines under healthy conditions, a combination of wavelet packet energy spectrum (WPES) and modified ensemble empirical mode decomposition (MEEMD) was used to extract features for the three-layer wavelet packet decomposition and reconstruction of the surface vibration signals of the low-speed engine under propulsion conditions. The IMF1 component spectrum was obtained by decomposing the nodes with larger energy dominance using MEEMD method. The results show that at lower engine loads below 40%, the vibration fluctuations of each single combustion cycle are small and the vibration amplitude is basically the same. When the engine load is raised to more than 50%, the vibration fluctuation caused by combustion is significantly enhanced. 41.51% of the total energy is in the medium and high frequency at 50% working condition, which is the main vibration source.
2024,46(4): 103-108 收稿日期:2023-02-23
DOI:10.3404/j.issn.1672-7649.2024.04.020
分类号:U164.121.1
基金项目:上海市科技创新计划资助项目(20DZ2252300)
作者简介:吴刚(1987-),男,博士,副教授,研究方向为船舶柴油机故障诊断
参考文献:
[1] WANG Y, GU J, YANG M, et al. Experimental and numerical study on the characteristics of a penetrating exhaust manifold for low-speed two-stroke marine diesel engine[J]. Energy, 2022, 238: 121550.
[2] 娄松涛. 基于RBF神经网络的船用低速柴油机故障诊断系统[J]. 舰船科学技术, 2022, 44(4): 108-11.
LOU S T. Fault diagnosis system for marine low speed diesel engine based on RBF neural network[J]. Ship Science and Technology, 2022, 44(4): 108-11.
[3] 蒋佳炜, 胡以怀, 方云虎, 等. 船舶动力装置智能故障诊断技术的应用与展望[J]. 中国舰船研究, 2020, 15(1): 56-67.
JIANG J W, HU Y H, FANG Y H, et al. Application and prospects of intelligent fault diagnosis technology for marine power system[J]. Chinese Journal of Ship Research, 2020, 15(1): 56-67.
[4] HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society A-mathematical Physical And Engineering Sciences, 1998, 454(1971): 903-95.
[5] 陈博, 陈光雄. 基于MEEMD和GA-SVM的列车车轮多边形故障识别方法[J]. 噪声与振动控制, 2018, 38(3): 157-61+97.
CHEN B, CHEN G X. Fault diagnosis method of wheel polygonization of trains based on MEEMD and GA-SVM[J]. Noise and Vibration Control, 2018, 38(3): 157-61+97.
[6] 王晋瑞, 谢丽蓉, 王忠强, 等. 基于MEEMD-DHENN的滚动轴承故障诊断[J]. 机械传动, 2018, 42(3): 43-139.
[7] 余华龙, 徐国林. 基于MEEMD和时变VARMA模型的地震动噪声清除及基线修正[J]. 地震工程与工程振动, 2022, 42(2): 172-80.
[8] 孙抗, 刘永超. 基于小波包和EMD的断路器机械故障诊断研究 [J]. 测控技术, 2017, 36(2): 20-3+7.
[9] 郑国刚, 戴光泽, 张敏男. 基于能量熵和EEMD结合的滚动轴承故障诊断方法 [J]. 现代制造工程, 2021(5): 139-45+5.
[10] 郑近德, 程军圣, 杨宇. 改进的EEMD算法及其应用研究[J]. 振动与冲击, 2013, 32(21): 21-6+46.
ZHENG J D, CHENG J S, YANG Y. Modified EEMD algorithm and its applications[J]. Journal of Vibration and Shock, 2013, 32(21): 21-6+46.
[11] 郑近德, 程军圣, 杨宇. 多尺度排列熵及其在滚动轴承故障诊断中的应用[J]. 中国机械工程, 2013, 24(19): 2641-6.
[12] ZHENG X, ZHOU N, ZHOU Q, et al. Experimental Investigation on the high-frequency pressure oscillation characteristics of a combustion process in a DI diesel engine[J]. Energies, 2020, 13(4): 871.
[13] ZHANG Q H, HAO Z Y, ZHENG X, et al. Characteristics and effect factors of pressure oscillation in multi-injection DI diesel engine at high-load conditions [J]. Applied Energy, 2017, 195,52-66.
[14] 袁成威, 刘博, 江枭枭, 等. 缸内直喷天然气低速船机压力振荡抑制方法数值研究[J]. 内燃机工程, 2019, 40(6): 56-63.