相比于其他氢能燃料电池方案,高温固体氧化物燃料电池(SOFC)与天然气燃料方案具有燃料成本低、联合循环的系统效率高、天然气燃料储-输-用经济和安全性高等优点,适合于中大型船舶与远海航行的应用场景。本文从船用紧凑式制氢重整器、船用能源系统集成等关键技术方面讨论讨论该方案在船上应用的可行性,为船用SOFC技术路线的发展提供可行性参考。
Compared with other hydrogen fuel cell schemes, the high-temperature solid oxide fuel cell (SOFC) and natural gas fuel schemes have the advantages of low fuel cost, high efficiency of combined cycle system, economy of natural gas fuel storage-transport and high safety, which is suitable for medium and large ships and long sea navigation application scenarios. In this paper, the feasibility of this scheme is discussed from the key technologies of marine compact hydrogen reformer, marine energy system integration and so on, which provides a feasible reference for the development of marine SOFC technology route.
2024,46(4): 116-119 收稿日期:2023-03-06
DOI:10.3404/j.issn.1672-7649.2024.04.022
分类号:U665
作者简介:王凯(1989-),男,工程师,研究方向为船舶与海洋工程轮机管理
参考文献:
[1] ZHENG W, MO Z, SHUN C, et al. Pollution: Three steps to a green shipping industry[J]. Nature. 2016, 530: 275-277.
[2] 李晓易,谭晓雨,吴睿,等. 交通运输领域碳达峰、碳中和路径研究[J]. 中国工程科学, 2021, 23(6): 15-21.
KAN A K, SHU C, YANG C, et al. Research on carbon peak and carbon neutrality pathways in the transportation sector[J]. Chinese Engineering Science, 2021, 23(6): 15-21.
[3] 阚安康,束晨,杨超,等. 船用一体式可逆固体氧化物燃料电池的催化反应机理和传递过程的数值模拟分析[J]. 上海海事大学学报, 2020, 41(4): 108-116.
KAN A K, SHU C, YANG C, et a. Numerical simulation analysis of catalytic reaction mechanism and transfer process using integrated reversible solid oxide fuel cells[J]. Journal of Shanghai Maritime University, 2020, 41(4): 108-116.
[4] KISTNER L, MINKE C, BENSMANN A, et al. Techno-economic and environmental comparison of Internal combustion engines and solid oxide fuel cells for ship applications[J]. Journal of Power Sources 508 (2021): 230328.
[5] SATTLER G, Fuel cells going on-board[J]. Journal of Power Sources, 2000, 86(1-2): 61-67.
[6] 杨发财, 李世安, 沈秋婉, 等. 绿色航运发展趋势和燃料电池船舶的应用前景[J]. 船舶工程, 2020, 42(4): 1-7.
YANG F C, LI S A, SHEN Q W, et al. The development trends of green shipping and the application prospects of fuel cell ships [J]. Ship Engineering, 2020, 42(4): 1-7.
[7] 刘继海, 肖金超, 魏三喜, 等. 绿色船舶的现状和发展趋势分析[J], 船舶工程, 38(2016): 33-37.
[8] 郑津洋, 刘自亮, 花争立, 等. 氢安全研究现状及面临的挑战[J]. 安全与环境学报, 2020, 20(1): 106-115.
[9] 董哲,兰轩睿. 浅谈工业制氢的方法[J]. 天津化工, 2021, 35(3): 11-12.
[10] 王嘉琦, 王秋颖, 朱桐慧, 等. 甲烷重整制氢的研究现状分析[J]. 现代化工, 2020, 40(7): 15-20.
[11] 陈彪杰,杨国刚. 甲烷重整技术研究进展, 现代化工, 41 (2021): 19-23.
[12] 方昆, 梁前超, 罗菁, 等. 基于故障树的SOFC-GT联合循环系统可靠性研究[J]. 海军工程大学学报, 2020, 32(4): 99-105.
FANG K, LIANG Q C, LUO J, et al. eliability study of SOFC-GT combined cycle system based on fault tree[J]. Journal of Naval University of Engineering, 2020, 32(4): 99-105.
[13] 胡小夫, 汪洋, 田力, 等. 顶层与底层SOFC-MGT联合循环系统性能对比分析[J]. 兵器装备工程学报, 2021, 42(8): 33-38.
QIAO R P, LIANG Q C, YANG F, et al. Comparative analysis of performance between top and bottom SOFC-MGT combined cycle systems[J]. Journal of Ordnance Equipment Engineering, 2021, 42(8): 33-38.
[14] 胡小夫, 汪洋, 田力, 等. 中高温SOFC/MGT联合发电技术研究进展[J]. 华电技术, 2019, 41(8): 1-5.
[15] F. Baldi, S. Moret, K. Tammi, F. Marechal, The role of solid oxide fuel cells in future ship energy systems, Energy 194 (2020): 116811.
[16] 赵洪滨, 杨倩, 江婷, 等. SOFC—联合循环系统性能分析[J]. 工程热物理学报, 2014, 35(5): 848-853.
[17] 蒙青山, 刘海, 韩吉田, 等. 基于SOFC/GT和跨临界CO_2联合循环系统热力性能研究[J]. 太阳能学报, 2017, 38(10): 2778-2784.
[18] THOUNTHONG P. Control strategy of fuel cell and supercapacitors association for a distributed generation system[J]. IEEE Transactions on Industrial Electonics, 2007, 54(6): 3225-3233.