以并联复合储能的船舶柴电混合动力系统为研究对象,基于Matlab/Simulink对柴油机、可逆电机、动力电池、超级电容、电源转换器等建立仿真模型,在此基础上开发了基于逻辑规则的能量管理策略。针对港口拖轮工况波动频率高、幅度大等特点,分别研究在不同的动力电池初始电池荷电状态下,纯柴油机驱动、柴油机-电池混合驱动、柴油机-电池-电容复合储能驱动等动力系统架构的柴油机油耗、储能系统的等效油耗、系统的总油耗以及氮氧化物的排放。结果显示,在拖轮典型工况下,采用柴油机-电池-电容复合储能驱动的系统总油耗相比纯柴油机驱动形式的油耗平均低6.63%,比柴油机-电池混合驱动形式平均多降低11%的油耗,氮氧化物排放量减少8%。
Targeting on a parallel marine hybrid power system coupled with composite storage devices, based on Matlab/Simulink, build the model of the system, containing marine engine, reversable motor, battery, super-capacitor and power converter, on which the logical-rule-based energy management strategy is carried. Simulation is performed on different initial state-of-charge of the battery of a diesel-only system, a diesel-battery hybrid system and the diesel-battery-supercapacitor hybrid system on a typical working condition of a tugboat, aiming at their engine fuel consumption, equivalent fuel consumption, system overall fuel consumption and nitrogen-oxide emission. Results indicate that the overall fuel consumption of the diesel-battery-supercapacitor hybrid system is 6.63% lower than that of the diesel-only system, and the fuel-saving rate of the diesel-battery-supercapacitor hybrid system is 11% higher than that of the diesel-battery hybrid system, and the nitrogen-oxide emission of the diesel-battery-supercapacitor hybrid system is 8% lower than that of the diesel-battery hybrid system.
2024,46(4): 135-142 收稿日期:2022-10-08
DOI:10.3404/j.issn.1672-7649.2024.04.025
分类号:U664.81
基金项目:国家自然科学基金面上项目(52271325)
作者简介:王绗林(1996-),男,硕士研究生,研究方向为船舶混合动力系统的仿真建模与能量管理
参考文献:
[1] 侯慧, 甘铭, 吴细秀, 等. 混合动力船舶能量管理研究综述[J]. 中国舰船研究, 2021, 16(5): 216–229
HOU H, GAN M, WU X X, et al. Review on energy management of hybrid ships[J]. Chinese Journal of Ship Research, 2021, 16(5): 216–229
[2] 苗东晓, 陈俐, 王欣然. 基于NSGA-Ⅱ优化的船舶串联式混合动力系统能量管理策略[J]. 舰船科学技术, 2022, 44(14): 113–118
[3] 吴思晨, 李铁, 依平, 等. 邮船柴油发电机与电池混合电力推进系统排放研究[J]. 船舶与海洋工程, 2021, 37(4): 35–40
[4] XUE Y, WANG K, HUANG L, et al, Research on the optimization and control technology of energy efficiency for new energy hybrid ships [C]//2021 6th International conference on transportation information and safety (ICTIS), 2021: 1-6.
[5] MOHAB G, El-BANNA S H, Mahmoud El-Dabah, et al. Intelligent energy management system for an all-electric ship based on adaptive neuro-fuzzy inference system [J]. Energy Reports, 2021: 7989-7998.
[6] NEJAD S, GLADWIN D T, STONE D A. A systematic review of lumped-parameter equivalent circuit models for real-time estimation of lithium-ion battery states [J]. Journal of Power Sources. 2016, 316: 183-196.
[7] 张泽辉. 混合动力船舶复合电源能量管理策略及容量配置研究[D]. 武汉:武汉理工大学, 2019.
[8] OLDHAM K B. A Gouy–Chapman–Stern model of the double layer at a (metal)/(ionic liquid) interface [J]. Journal of Electroanalytical Chemistry. 2008, 613(2): 131-138.
[9] GHIMIRE P, ZADEH M, PEDERSEN E, et al. Dynamic efficiency modeling of a marine DC hybrid power system [C]//2021 IEEE Applied Power Electronics Conference and Exposition (APEC), 2021: 855-862.
[10] 高迪驹, 张伟, 王旭阳, 等. 基于模型预测控制的混合动力船舶能量控制策略[J]. 上海海事大学学报, 2018, 39(2): 60–65
[11] 张恒熙. 并联式船舶混合动力系统能量管理策略研究[D]. 哈尔滨:哈尔滨工程大学, 2021.
[12] KERMANI S, DELPRAT S, GUERRA T M, et al. Predictive energy management for hybrid vehicle [J]. Control Engineering Practice, 2012, 20(4): 408–420.
[13] SUN Hui, JIANG Ji-hai, WANG Xin. Torque control strategy for a parallel hydraulic hybrid vehicle [J], Journal of Terramechanics, 2009, 12(46): 259–265.
[14] GRIMMELIUS H, PETER V, KRIJGSMAN M, et al. Control of hybrid ship drive systems [J]. Research Gate, 2011.