随着大数据及人工智能的发展,知识图谱以超强关系表达能力、交互探索式分析方式、智能性知识逻辑体系、高速数据调取速度等突出特点在个性化推荐系统中逐步推广应用。本文对基于知识图谱的航海信息个性化推荐系统进行研究,结合船长和船员在航海作业时界面浏览、操控频率等习惯性操作,综合分析航海知识图谱构建技术、航海信息元关联技术、个性化推荐挖掘技术,搭建基于动态热力圈的船流量、基于地理位置的热点航海信息、基于进出港操纵下泊位信息分级、基于位置信息库的船舶动态迁徙的专题推荐功能,实现海上-港内-船上全流程航海信息的“一站式获取、按需推送”个性化推荐服务,极大精简了航海作业流程,提升航海作业信息综合应用的智能化水平。
With the development of big data and artificial intelligence, knowledge atlas has been gradually popularized and applied in personalized recommendation system with its outstanding features such as super relational expression ability, interactive exploratory analysis, intelligent knowledge logic system, and high-speed data retrieval speed. This paper studies the navigation information personalized recommendation system based on the knowledge map. Combining with the customary operations of the captain and crew during navigation operations such as interface browsing and control frequency, it comprehensively analyzes the navigation knowledge map construction technology, navigation information element association technology, personalized recommendation mining technology, and builds the ship flow based on dynamic thermal circle, hot navigation information based on geographical location Based on the special recommendation function of berth information classification under inbound and outbound operations and dynamic migration of ships based on the location information database, the personalized recommendation service of "one-stop access and on-demand push" for the whole process of navigation information at sea, in port and on board has been realized, which greatly simplifies the navigation operation process and improves the intelligent level of integrated application of navigation operation information.
2024,46(4): 152-157 收稿日期:2023-02-28
DOI:10.3404/j.issn.1672-7649.2024.04.028
分类号:U675.8
作者简介:崔明月(1994-),女,硕士,工程师,研究方向为航海导航技术
参考文献:
[1] 朱冬亮, 文奕, 万子琛. 基于知识图谱的推荐系统研究综述[J]. 数据分析与知识发现, 2021, 5(12): 1-13.
ZHU D L, WEN Y, WANG Z C. Review of Recommendation systems based on knowledge graph [J]. Data Analysis and Knowledge Discovery, 2021, 5(12): 1-13.
[2] 项亮. 推荐系统实践[M]. 北京: 人民邮电出版社, 2012: 44-59.
[3] 于蒙, 何文涛, 周绪川, 等. 推荐系统综述[J]. 计算机应用, 2021(4): 2.
YU M, HE W T, ZHOU X , et al. Review of recommendation systems [J]. Journal of Computer Applications, 2021(4): 2.
[4] 郑莉雯. 基于冲突消解的链式充电桩推荐算法研究[D]. 广州: 广州大学, 2021.
[5] 彭正涛. 基于位置感知的室内个性化推荐研究[D]. 徐州: 中国矿业大学, 2021.
[6] 唐港迪. 基于地理位置的个性化新闻推荐系统设计与实现[D]. 成都: 电子科技大学, 2021.
[7] 雷金平. 地理信息系统在航海中的应用研究[D]. 武汉: 武汉理工大学, 2004, 2018(32): 3575.
[8] 张洪鸣, 张兴义. 物联网感知技术在航运业中的应用[J]. 中国科技信息, 2018(15): 82-83.
ZHANG H M, ZHANG X Y. Application of IoT sensing technology in shipping industry[J]. China Science and Technology Information, 2018(15): 82-83.
[9] 李力强. 基于北斗/GPS/ECDIS的战时舰船管理系统研究[D]. 济南: 山东大学, 2005.
[10] 徐海文, 谭台哲. 基于知识图谱的个性化推荐系统构建[J]. 数字技术与应用, 2022, 40(3): 152-154+164.
ZHU D L, WEN Y, WANG Z C. Construction of personalized recommendation system based on knowledge graph [J]. Digital Technology &Application, 2022, 40(3): 152-154+164.
[11] 李琦. 基于机器翻译与知识图谱的船舶信息智能查询研究[D]. 大连: 大连海事大学, 2020.
[12] 谭乐平, 杨夏. 基于知识图谱下的舰船电子信息协同推荐算法[J]. 舰船科学技术, 2020, 42(14): 169-171.
TAN L P, YANG X. Research on cooperative recommendation algorithm of ship electronic information under knowledge map[J]. Ship Science and Technology, 2020, 42(14): 169-171.
[13] 曾红莉, 陈家宾. 面向个性化服务的船舶标准信息服务系统构建研究[J]. 船舶标准化与质量, 2016(2): 7-9.
ZENG H L, CHEN J B. Research on the construction of ship standard information service system for personalized service[J]. Ship Standardization and Quality, 2016(2): 7-9.
[14] 张金斗. 知识图谱分布式表示学习方法及应用研究[D]. 合肥: 中国科学技术大学, 2021.
[15] 梁浩宏. 基于图表示学习的个性化推荐研究[D]. 桂林: 桂林电子科技大学, 2021.
[16] 凌志斌. 基于知识图谱的个性化推荐技术研究[D]. 广州: 华南理工大学, 2020.
[17] 陈柯棠, 程良伦. 基于知识图谱和信息融合的个性化推荐算法[J]. 工业控制计算机, 2021, 34(6): 40-42+45.
CHEN K T, CHENG L L. Personalized Recommendation Algorithm based on Knowledge Graph and Information Fusion[J]. Industrial Control Computer, 2021, 34(6): 40-42+45.
[18] 邢立栋. 面向特定领域的知识图谱构建技术研究与应用[D]. 北京化工大学, 2018.
[19] 贾宁宁. 面向知识图谱扩充的知识获取关键技术研究[D]. 北京: 北京邮电大学, 2021.
[20] 宋秀来. 基于知识图谱的个性化推荐方法研究[D]. 桂林: 桂林电子科技大学, 2021.