为了能够快速确定爆炸冲击波作用下变形圆板表面的载荷大小,首先,通过数值模拟方法探究了爆炸冲击波与固支圆板的相互作用过程,获取了变形圆板表面爆炸载荷的分布规律。然后,引入量纲分析,探究了圆板半径、厚度、爆心距圆板的距离、目标点距圆心的距离以及TNT当量等因素对变形圆板表面爆炸载荷的影响。最后,结合数值仿真和量纲分析,推导了变形圆板表面任意一点处爆炸载荷(最大冲量)的计算公式。结果表明,在变形圆板表面,爆炸载荷的分布非均匀,圆板中部压力峰值和冲量较边缘高;推导的公式能够较好快速计算出圆板表面载荷。研究结果可为相关防护结构设计和安全评估提供快速简单的参数输入。
To quickly determine the load on the deformed surface under the action of blast wave, firstly, the interaction process between the blast wave and the clamped circular plate is investigated through numerical simulation, and the distribution law of explosion load on the deformed surface of the circular plate is obtained. Then, dimensional analysis is introduced to explore the influence of such factors as the radius and thickness of the circular plate, the distance between the explosion center and the circular plate, the distance between the target point and the circular center, and TNT equivalent on the deformed surface blast load. Finally, combined with numerical simulation and dimensional analysis, the calculation formula of explosion load ( maximum impulse ) at any point on the deformed surface of circular plate is derived. The results show that the distribution of blast load is non-uniform on the deformed surface of the circular plate, and the peak pressure and impulse in the middle of the circular plate are higher than those at the edge; The derived formula can be used to calculate the deformation surface load of the circular plate quickly. The research results can provide quick and simple parameter input for the design and safety assessment of relevant protective structures.
2024,46(5): 21-26 收稿日期:2023-03-07
DOI:10.3404/j.issn.1672-7649.2024.05.004
分类号:O344.7
基金项目:国家自然科学基金资助项目(51979213)
作者简介:郭佳凯(1998-),男,硕士研究生,研究方向为舰船抗爆防护设计
参考文献:
[1] HENRYCH J. The dynamics of explosion and its use [M]. Amsterdam: Elsevier, 1979: 265-266.
[2] TM5-1300. Structures to resist the effects of accidental explosions [M]. US Department of the Army, Navy and Air Force Technical Manual, 1990.
[3] UFC-3-340-02. Unified facilities criteria UFC DOD structures to resist the effects of accidental explosions [M]. US Department of Defense, 2008.
[4] GERETTO C, CHUNG KIM YUEN S, NURICK G N. An experimental study of the effects of degrees of confinement on the response of square mild steel plates subjected to blast loading[J]. International Journal of Impact Engineering, 2015, 79: 32-44.
[5] HELD M, HEEGER P, KIERMEIR J. Displacement device to measure the acceleration of the bulge of RHA plates under anti-tank mine blast [C]// Proceedings of 22nd International Symposium on Ballistics. Vancouver: International Ballistics Committee, 2005: 995 1000.
[6] ANDERSON C E, BEHNER T, WEISS C E. Mine blast loading experiments[J]. International Journal of Impact Engineering, 2011, 38(8): 697-706.
[7] 侯俊亮, 蒋建伟, 门建兵, 等. 不同形状装药爆炸冲击波场及对靶板作用效应的数值模拟[J]. 北京理工大学学报, 2013, 33(6): 556-561.
[8] SHI Y, HAO H, LI Z X. Numerical simulation of blast wave interaction with structure columns[J]. Shock Waves, 2007, 17(1): 113-133.
[9] 李臻, 刘彦, 黄风雷, 等. 接触爆炸和近距离爆炸比冲量数值仿真研究[J]. 北京理工大学学报, 2020, 40(2): 143-149.
[10] 汪维, 张舵, 卢芳云, 等. 近爆作用下结构表面上爆炸载荷确定方法研究[J]. 兵工学报, 2013, 34: 234-242.
[11] 汪维, 刘光昆, 赵强, 等. 近爆作用下方形板表面爆炸载荷分布函数研究[J]. 中国科学:物理学 力学 天文学, 2020, 50(2): 144-152.
[12] 陈鹏宇, 侯海量, 金键, 等. 舰船舱内爆炸载荷简化载荷计算模型[J]. 舰船科学技术, 2020, 42(9): 22-29.
CHEN P Y, HOU H L, JIN J, et al. Simplified calculation model for explosion loading in ship cabin[J]. Ship Science and Technology, 2020, 42(9): 22-29.
[13] 姚熊亮, 屈子悦, 姜子飞, 等. 舰船舱内爆炸载荷特征与板架毁伤规律分析[J]. 中国舰船研究, 2018, 13(3): 140-148.
[14] 焦晓龙. 多舱室结构内爆载荷下毁伤效果评估方法研究[D]. 太原: 中北大学, 2020
[15] 郭子涛, 高斌, 郭钊, 等. 基于J-C模型的Q235钢的动态本构关系[J]. 爆炸与冲击, 2018, 38(4): 804-810.