方形结构由于存在几何棱角,在来流作用下会发生复杂的振动响应,是流致振动能量收集的理想结构。本文针对方柱流致振动开展数值模拟研究,分析不同来流角度下柱体的流致振动类型,揭示截面几何特征、来流角度对柱体振动响应、流体力及相位变化、尾流结构的影响。研究结果表明,来流角度是影响方柱振动响应和振动模式的重要因素,当来流角度为0°时,方柱会产生驰振响应,尾流结构发生斜向偏移且周期内漩涡脱落丰富,导致柱体呈低频高幅振动;来流角度在15°≤θ≤30°时,方柱产生涡激振动与驰振耦合的振动响应,来流角度为45°时,方柱发生涡激振动响应;从能量俘获角度,控制来流角度使方柱发生驰振响应,从而实现大范围流速下的海洋能量汲取。
Due to the presence of geometric edges and corners, the square structure exhibits a complex vibration response when subjected to incoming flow, making it an ideal structure for collecting flow-induced vibration energy. This paper presents a numerical simulation study on the flow-induced vibration of a square cylinder, analyzing the various types of cylinder vibrations under different incoming flow angles and revealing the effects of section geometry and inflow angle on vibration response, fluid force, phase change, and wake structure. The results demonstrate that the inflow angle plays a crucial role in determining both the vibration response and mode of the square cylinder. When the Angle of incoming flow is 0°, the square cylinder will produce galloping response, and the wake structure will be inclined to shift and the vortex shedding is abundant in the period, resulting in low frequency and high amplitude vibration of the square cylinder. When the incoming flow Angle is 15°≤θ ≤30°, vortex-induced vibration and galloping coupling vibration response of the square cylinder occurs. When the incoming flow Angle is 45°, vortex-induced vibrations are observed in the square cylinder. By controlling the incoming flow angle to induce galloping responses in the square cylinder from an energy capture perspective, wide-range ocean energy absorption can be achieved.
2024,46(5): 27-33 收稿日期:2023-10-30
DOI:10.3404/j.issn.1672-7649.2024.05.005
分类号:TE7;O327
基金项目:国家自然科学基金资助项目(52301355);青岛市自然科学基金资助项目(23-2-1-108-zyyd-jch)
作者简介:李想(1998-),女,硕士,研究方向为水下结构机械设计
参考文献:
[1] 王项南, 麻常雷. “双碳”目标下海洋可再生能源资源开发利用[J]. 华电技术, 2021, 43(11): 91-96.
[2] 王颖, 韩光, 张英香. 深海海洋工程装备技术发展现状及趋势[J]. 舰船科学技术, 2010, 32(10): 108-113+124.
[3] 刘振雷, 娄敏, 王晓凯, 等. 不同间距比下串联圆柱涡激振动数值模拟研究[J]. 舰船科学技术, 2022, 44(22): 76-82.
[4] ZHU Hongjun, ZHAO Ying, ZHOU Tongming. CFD analysis of energy harvesting from flow induced vibration of a circular cylinder with an attached free-to-rotate pentagram impeller[J]. Applied Energy, 2018, 212: 304-321.
[5] WANG Jiasong, FAN Dixia, LIN Ke. A review on flow-induced vibration of offshore circular cylinders[J]. Journal of Hydrodynamics, 2020, 32: 415-440.
[6] 韩鹏, 潘光, 黄桥高, 等. 雷诺数对于方柱流致振动能量收集系统的影响[J]. 西北工业大学学报, 2020, 38(5): 928-936.
[7] 邵禄宇, 白旭, 牛建杰, 等. 不同流速下磁悬浮支撑单圆柱振子流致振动响应分析[J]. 舰船科学技术, 2023, 45(4): 14-17.
[8] LOU Min, WANG Yu, QIAN Gang, et al. Investigation on the vortex-induced vibration active control of the riser in the "lock-in" region based on adaptive fuzzy sliding mode theory[J]. Ocean Engineering, 2021, 238: 1-17.
[9] 张乾坤, 王博涵, 陈海龙, 等. 加强形式对翼型结构流致振动的影响[J]. 舰船科学技术, 2021, 43(1): 43-47.
[10] BERNITSAS M M, RAGHAVAN K, et al. VIVACE(Vortex Induced Vibration Aquatic Clean Energy): A new concept in generation of clean and renewable energy from fluid flow[C]//25th International Conference on Offshore Mechanics and Arctic Engineering, 2008.
[11] HARTOG J P D. Transmission line vibration due to sleet[J]. Electrical Engineering, 1932, 51: 1-3.
[12] PARKINSON G V, SMITH J D. The square prism as an aeroelastic nonlinear oscillator[J]. Journal of Mechanics and Applied Mathematics, 1964, 17: 225-239.
[13] WHITE W N. An analysis of the influence of support stiffness on transmission line galloping amplitudes[D]. New Orleans: Tulane University, 1985.
[14] 邓见, 任安禄, 邹建锋. 方柱绕流横向驰振及涡致振动数值模拟[J]. 浙江大学学报:工学版, 2005, 39(4): 595-599.
[15] SU Z, LIU Y, ZHANG H. Numerical simulation of vortex-induced vibration of a square cylinder[J]. Journal of Mechanical Science and Technology, 2007, 21(9): 1415-1424.
[16] BARRERO G A, FERNANDEZ A P. Maximum vortex-induced vibrations of a square prism[J]. Wind & Structures an International Journal, 2013, 17(1): 107-121.
[17] MANZOOR S, KHAWAR J, SHEIKH N A. Vortex-induced vibrations of a square cylinder with damped free-end conditions[J]. Advances in Mechanical Engineering, 2013, 5: 1-12.
[18] LI Xintao, ZHEN Lyu, KOU Jiaqing, et al. Mode competition in galloping of a square cylinder at low Reynolds number[J]. Journal of Fluid Mechanics, 2019, 867: 516-555.
[19] 练继建, 燕翔, 刘昉, 等. 正方形截面振子在不同来流方向的单自由度流致振动特性研究[J]. 振动与冲击, 2017, 36(15): 29-35.
[20] 胡德江. 不同截面形状柱体流致振动特性实验研究[D]. 重庆: 重庆大学, 2016.
[21] TRIAS F X, GOROBETS A, OLIVA A. Turbulent flow around a square cylinder at Reynolds number 22000: A DNS study[J]. Computers & Fluids, 2015, 123: 87-98.
[22] LYN D A, EINAV S, RODI W. A laser-Doppler velocimetry study of ensemble-averaged characteristics of the turbulent near wake of a square cylinder[J]. Fluid Mechanics, 1995, 304: 285-319.
[23] NEMES A, ZHAO J, LO JACONO D, et al. The interaction between flow-induced vibration mechanisms of a square cylinder with varying angles of attack[J]. Fluid Mechanics, 2012, 710: 102-30.